Security and Privacy in Distributed Health Care Environments.

Methods Inf Med

Department of Digital Systems, University of Piraeus, Pireas, Greece.

Published: May 2022

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726452PMC
http://dx.doi.org/10.1055/a-1768-2966DOI Listing

Publication Analysis

Top Keywords

security privacy
4
privacy distributed
4
distributed health
4
health care
4
care environments
4
security
1
distributed
1
health
1
care
1
environments
1

Similar Publications

Purpose: This study aimed to explore a combined transrectal ultrasound (TRUS) and radiomics model for predicting tumor regression grade (TRG) after neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced rectal cancer (LARC).

Methods: Among 190 patients with LARC, 53 belonged to GRG and 137 to PRG. Eight TRUS parameters were identified as statistically significant (P < 0.

View Article and Find Full Text PDF

Although the integration of artificial intelligence (AI) into medicine and healthcare holds transformative potential, significant challenges must be necessarily addressed. This technological innovation requires a commitment to ethical principles. Key issues concern autonomy, reliability, and bias.

View Article and Find Full Text PDF

Design of an improved graph-based model for real-time anomaly detection in healthcare using hybrid CNN-LSTM and federated learning.

Heliyon

December 2024

Department of Computer Science & Engineering, K L E F Deemed To Be University, Green Fields, Vaddeswaram, Guntur (dt), Andhra Pradesh, 521230, India.

Real-time monitoring and anomaly detection are essential in healthcare to ensure safe conditions for patients and maintain the integrity of medical data samples. The majority of existing systems, despite improvements in healthcare technologies, cannot capture the spatial and temporal patterns of multimodal data simultaneously, process high Volume data in real-time, and ensure the privacy of patients' identity effectively. In this work, we handle these limitations by proposing a complete approach that uses state-of-the-art deep learning and data processing architectures to realize resilient anomaly detection in healthcare systems.

View Article and Find Full Text PDF

Comprehensive histopathological analysis of gastric cancer in European and Latin America populations reveals differences in PDL1, HER2, p53 and MUC6 expression.

Gastric Cancer

January 2025

Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.

Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.

Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.

View Article and Find Full Text PDF

This survey explores the transformative impact of foundation models (FMs) in artificial intelligence, focusing on their integration with federated learning (FL) in biomedical research. Foundation models such as ChatGPT, LLaMa, and CLIP, which are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback, represent significant advancements in machine learning. These models, with their ability to generate coherent text and realistic images, are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!