A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Skin3D: Detection and longitudinal tracking of pigmented skin lesions in 3D total-body textured meshes. | LitMetric

Skin3D: Detection and longitudinal tracking of pigmented skin lesions in 3D total-body textured meshes.

Med Image Anal

Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby V5A 1S6, Canada. Electronic address:

Published: April 2022

We present an automated approach to detect and longitudinally track skin lesions on 3D total-body skin surface scans. The acquired 3D mesh of the subject is unwrapped to a 2D texture image, where a trained objected detection model, Faster R-CNN, localizes the lesions within the 2D domain. These detected skin lesions are mapped back to the 3D surface of the subject and, for subjects imaged multiple times, we construct a graph-based matching procedure to longitudinally track lesions that considers the anatomical correspondences among pairs of meshes and the geodesic proximity of corresponding lesions and the inter-lesion geodesic distances. We evaluated the proposed approach using 3DBodyTex, a publicly available dataset composed of 3D scans imaging the coloured skin (textured meshes) of 200 human subjects. We manually annotated locations that appeared to the human eye to contain a pigmented skin lesion as well as tracked a subset of lesions occurring on the same subject imaged in different poses. Our results, when compared to three human annotators, suggest that the trained Faster R-CNN detects lesions at a similar performance level as the human annotators. Our lesion tracking algorithm achieves an average matching accuracy of 88% on a set of detected corresponding pairs of prominent lesions of subjects imaged in different poses, and an average longitudinal accuracy of 71% when encompassing additional errors due to lesion detection. As there currently is no other large-scale publicly available dataset of 3D total-body skin lesions, we publicly release over 25,000 3DBodyTex manual annotations, which we hope will further research on total-body skin lesion analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2021.102329DOI Listing

Publication Analysis

Top Keywords

skin lesions
16
total-body skin
12
lesions
10
skin
8
pigmented skin
8
lesions total-body
8
textured meshes
8
longitudinally track
8
subjects imaged
8
publicly dataset
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!