Long-term exposure to environmental arsenic has been associated with many chronic diseases, including several cancers, and diabetes. Urinary studies have implicated arsenic speciation as an important risk factor, however, such associations have not been replicated using toenail samples: a relatively new biosample for estimating long-term internal dose-exposure to arsenic. Despite having several advantages over conventional biosamples such as ease of collection and storage, standard methods for arsenic speciation analysis in toenails have not yet been established. The primary objectives of this study were to 1) establish an analytical method for arsenic speciation analysis in toenails, 2) describe preliminary arsenic speciation profiles of toenail samples from individuals with skin, lung, bladder, and kidney cancer, type II diabetes, and no known disease, and 3) determine if these speciation patterns differ between disease groups to inform the feasibility of subsequent research. A small cross-sectional feasibility study was carried out using 60 toenail samples and baseline questionnaire data from the Atlantic Partnership for Tomorrow's Health (Atlantic PATH) study. Arsenic speciation profiles were determined using high performance liquid chromatography (HPLC) paired with inductively coupled plasma-mass spectrometry (ICP-MS). While no differences in total arsenic were found, arsenic speciation profiles were significantly different between certain cancer groups and the reference group with no known disease. Specifically, the percentage of monomethylarsonic acid (%MMA) was found to be significantly higher in the toenails of individuals with lung cancer and kidney cancer, compared to healthy individuals with similar total arsenic exposure. To the best of our knowledge, this is the first study to describe arsenic speciation patterns in individuals with several arsenic-related diseases using toenails: a convenient, non-invasive, biobankable sample capable of longer-term exposure estimation than conventional biosamples. These preliminary data provide evidence that toenail arsenic speciation patterns differ between groups with arsenic-related disease, and those with no known disease. Toenail arsenic speciation analysis is feasible and could potentially have important implications for research on arsenic-related diseases. Further investigation is warranted and would benefit from including detailed arsenic exposure data to explore the observed heterogeneity in arsenic speciation profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2022.113269 | DOI Listing |
J Hazard Mater
January 2025
Research Institute for Environmental Innovation (Binhai, Tianjin), Tianjin 300450, PR China. Electronic address:
The speciation and mobility of arsenic (As) in waters are largely influenced by the colloids; however, the impacts of colloids with different molecular weights (MWs) in water fractions remain largely unknown. Herein, the surface water was fractionated into three colloidal fractions and truly dissolved fraction via cross-flow ultrafiltration. Total As (As(T)) presented mainly as As(V) and existed primarily in the truly dissolved fraction.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
Department of Food Science and Nutrition, Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
Arsenic (As) occurs naturally in different forms and oxidation states. Amongst them, inorganic arsenic (iAs) is classified as both genotoxic and carcinogenic whilst other organic arsenic species are considered less toxic. As in rice is mainly present in the form of iAs which therefore poses a health risk to populations that consume rice as a staple food.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, CP, Argentina.
Arsenic (As) contamination in agricultural groundwater and soil is a significant economic and health problem worldwide. It inhibits soybean (Glycine max (L.) Merr.
View Article and Find Full Text PDFWater Res
December 2024
Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil. Electronic address:
Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Piso 1, C1428EHA, Buenos Aires, Argentina.
Arsenic is a well-known toxic substance, widely distributed, whereas vanadium is a pollutant of emerging interest. Both have been found to correlate positively in groundwaters, thus concern arises on the effect of these pollutants on crops, if such waters are used for irrigation. We conducted a study on the effect of aging with a typical crop soil mimicking soils initially irrigated with water containing As and V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!