In antifouling applications for the marine industry, low surface energy coatings entail turbulent water flow to release marine biofouling, which presents a substantial challenge for antifouling in the static situation. The traditional solution is to add environmentally friendly antifouling agents, but it has the problem of exhaustion. Therefore, the low surface energy elastic antifouling coating without antifoulants has high research value. Herein, inspired by soft body and epidermal mucus of squid, the stable polyvinylpyrrolidone (PVP) hydrophilic segments were introduced to modify the polydimethylsiloxane-based polyurethane (PDMS-PU), realizing low surface energy elastomer coatings with hydrophilized defensive surface and reduced elastic modulus (<1.1 MPa). In an aqueous environment, the tailored surface exposed sufficient stable hydrophilic segments, exerting excellent antifouling performance, which improved the anti-adsorption effect on biological proteins, bacteria (antibacterial rate 95.24%) and algae (cover rate <3%). The coating exhibited excellent marine antifouling performance within 150 days and also gave a new impetus to developing an eco-friendly and sustainable solution for no-antifoulant marine antifouling applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2022.112392 | DOI Listing |
Small
March 2025
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China.
Transition metal selenides (TMSe) are promising oxygen evolution reaction (OER) electrocatalysts but act as precursors rather than the actual active phase, transforming into amorphous oxyhydroxides during OER. This transformation, along with the formation of selenium oxyanions and unstable heterointerfaces, complicates the structure-activity relationship and reduces stability. This work introduces novel "layered-hierarchical dual lattice strain engineering" to inhibit the surface reconstruction of NiSe by modulating both the nickel foam (NF) substrate with MoN nanosheets (NM) and the NiSe nanorods-nanosheets catalytic layer (NiSe-NiSe-NiO, NSN) with ultrafast interfacial bimetallic amorphous NiFeOOH coating, achieving the optimized NM/NSN/NiFeOOH configuration.
View Article and Find Full Text PDFSmall Methods
March 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
Metal carbides are considered attractive lithium-ion battery (LIB) anode materials. Their potential practical application, however, still needs nanostructure optimization to further enhance the Li-storage capacity, especially under large current densities. Herein, a nanoporous structured multi-metal carbide is designed, which is encapsulated in a 3D free-standing nanotubular graphene film (MnNiCoFe-MoC@NG).
View Article and Find Full Text PDFAdv Healthc Mater
March 2025
Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
Intervertebral disc degeneration (IVDD) is a major cause of low back pain, where oxidative stress and mitochondrial dysfunction are key contributors. Additionally, ferroptosis, an iron-dependent form of cell death, is identified as a critical mechanism in IVDD pathogenesis. Herein, the therapeutic potential of gallic acid (GA)-derived PGA-Cu nanoparticles, enhanced with functional octapeptide (Cys-Lys-His-Gly-d-Arg-d-Tyr-Lys-Phe, SS08) to build the mitochondria-targeted nanoparticles (PGA-Cu@SS08), and embedded within a hydrogel matrix to form a nanocomposite hydrogel, is explored.
View Article and Find Full Text PDFRSC Adv
March 2025
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
In this work, we conducted a computational study on single atom doped InO catalysts with 12 transition metals (Fe-Cu, Ru-Ag, Os-Au) through density functional theory (DFT) calculations, by investigating the dissociation of H, and the dissociation and hydrogenation of CO. From the thermodynamic-kinetic scaling relationships such as Brønsted-Evans-Polanyi (BEP) and transition-state scaling (TSS) relations, we establish the descriptors for the energy barriers and improve our understanding of the synergistic catalytic effect of oxygen vacancies and single atoms. We find that the adsorption energy of the H adatom on the perfect surface can serve as an effective descriptor for the dissociation energy barrier of H on this surface, and the formation energy of the oxygen vacancy can serve as an effective descriptor for the energy barrier of CO hydrogenation to HCOO as well as the energy barrier of CO direct dissociation.
View Article and Find Full Text PDFFront Toxicol
February 2025
Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
Background: The specific and non-specific toxicities of cryoprotective agents (CPAs) for semen or spermatozoa cryopreservation/vitrification (SC/SV) remain challenges to the success of assisted reproductive technologies.
Objective: We searched for and integrated the physicochemical and toxicological characteristics of small-molecule CPAs as well as curated the information of all extenders reported for carnivores to provide a foundation for new research avenues and computational cryobiology.
Methods: The PubMed database was systematically searched for CPAs reported in SC/SV of carnivores from 1964 to 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!