Beclin1-mediated interplay between autophagy and apoptosis: New understanding.

Int J Biol Macromol

School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, UP-221005, India. Electronic address:

Published: April 2022

The definition for autophagy holds a 'single' meaning as a conserved cellular process that constitutes a recycling pathway for damaged organelles and long-lived proteins to maintain nutrient homeostasis and mediate quality control within the cell. But this process of autophagy may behave ambiguously depending on the physiological stress as the stress progresses in the cellular microenvironment; the 'single' meaning of the autophagy changes from the 'cytoplasmic turnover process' to 'tumor suppressive' and a farther extent, 'tumor promoter' process. In a tumorigenic state, the chemotherapy-mediated resistance and intolerance due to upregulated autophagy in cancer cells have become a significant concern. This concern has provided insight to the scientific community to enter into the arena of cross-talk between autophagy and apoptosis. Recent findings and ongoing research have provided insights on some of the key regulators of this cross-talk; one of them is Beclin1 and their involvement in the physiological and the pathophysiological processes; however, reconciliation of these two forms of death remains an arena to be explored extensively. This review sheds light on the interplay between autophagy and apoptosis, emphasizing one of the key players, Beclin1, and its importance in health and diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.02.005DOI Listing

Publication Analysis

Top Keywords

autophagy apoptosis
12
interplay autophagy
8
'single' meaning
8
autophagy
7
beclin1-mediated interplay
4
apoptosis understanding
4
understanding definition
4
definition autophagy
4
autophagy holds
4
holds 'single'
4

Similar Publications

Aim: St. John\'s Wort Oil (JWO) has a sedative property and it is used traditionally for the treatment of depression, neuralgia and excitability. JWO has been shown to have anticancer activity via apoptosis in glioblastoma cells.

View Article and Find Full Text PDF

Background: Mitochondria, as the energy factories of cells, are involved in a wide range of vital activities, including cell differentiation, signal transduction, the cell cycle, and apoptosis, while also regulating cell growth. However, current pharmacological treatments for stroke are challenged by issues such as drug resistance and side effects, necessitating the exploration of new therapeutic strategies.

Objective: This review aims to summarize the regulatory effects of natural compounds targeting mitochondria on neuronal mitochondrial function and metabolism, providing new perspectives for stroke treatment.

View Article and Find Full Text PDF

Background: The glomerular podocyte endoplasmic reticulum is a critical component in renal function, yet its research landscape is not fully understood. This study aims to map the existing research on podocyte endoplasmic reticulum by analyzing publications in the Web of Science Core Collection (WOSCC) from the past 19 years.

Methods: We conducted a bibliometric analysis using Citespace, VOSviewer, the Metrology Literature Online platform, and the Bibliometrix software package to visualize and interpret the data from WOSCC.

View Article and Find Full Text PDF

Mitochondria are important organelles that regulate cellular energy and biosynthesis, as well as maintain the body's response to environmental stress. Their dynamics and autophagy influence occurrence of cellular function, particularly under stressful conditions. They can generate reactive oxygen species (ROS) which is a major contributor to inflammatory diseases such as ulcerative colitis (UC).

View Article and Find Full Text PDF

Oral cancer is a highly malignant disease characterized by recurrence, metastasis, and poor prognosis. Autophagy, a catabolic process induced under stress conditions, has been shown to play a dual role in oral cancer development and therapy. Recent studies have identified that autophagy activation in oral epithelial cells suppresses cancer cell survival by inhibiting key pathways such as the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK), while activating the adenosine monophosphate-activated protein kinase (AMPK) pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!