In plants, large numbers of R genes, which segregate as loci with alternative alleles conferring different levels of disease resistance to pathogens, have been maintained over a long period of evolution. The reason why hosts harbor susceptible alleles in view of their null contribution to resistance is unclear. In rice, a single copy gene, Pi-ta, segregates for 2 expressed clades of alleles, 1 resistant and the other susceptible. We simulated loss-of-function of the Pi-ta susceptible allele using the CRISPR/Cas9 system to detect subsequent fitness changes and obtained insights into fitness effects related to the retention of the Pi-ta susceptible allele. Our creation of an artificial knockout of the Pi-ta susceptible allele suffered fitness-related trait declines of up to 49% in terms of filled grain yield upon the loss of Pi-ta function. The Pi-ta susceptible alleles might serve as an off-switch to downstream immune signaling, thus contributing to the fine-tuning of plant defense responses. The results demonstrated that the susceptible Pi-ta alleles should have evolved pleiotropic functions, facilitating their retention in populations. As Pi-ta is a single copy gene with no paralogs in the genome, its function cannot be compensated by an alternative gene; whereas most other R genes form gene clusters by tandem duplications, and the function could be compensated by paralogs with high sequence similarity. This attempt to evaluate the fitness effects of the R gene in crops indicates that not all disease resistance genes incur fitness costs, which also provides a plausible explanation for how host genomes can tolerate the possible genetic load associated with a vast repertoire of R genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982021PMC
http://dx.doi.org/10.1093/genetics/iyac019DOI Listing

Publication Analysis

Top Keywords

pi-ta susceptible
20
susceptible alleles
12
susceptible allele
12
pi-ta
9
retention pi-ta
8
susceptible
8
disease resistance
8
single copy
8
copy gene
8
fitness effects
8

Similar Publications

Exploring Distribution and Evolution of Haplotypes in Rice Landraces across Different Rice Cultivation Regions in Yunnan.

Genes (Basel)

October 2024

Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.

: Rice blast, caused by , seriously damages the yield and quality of rice worldwide. is a durable resistance gene that combats carrying . However, the distribution of the gene in rice germplasms in Yunnan Province has been inadequately studied.

View Article and Find Full Text PDF

Rice blast, caused by , is the most destructive rice disease worldwide. The disease symptoms are usually expressed on the leaf and panicle. The leaf disease intensity in controlled environmental conditions is frequently quantified using a 0 to 5 scale, where 0 represents the absence of symptoms, and 5 represents large eyespot lesions.

View Article and Find Full Text PDF

Background: Taichung Native 1 (TN1) is the first semidwarf rice cultivar that initiated the Green Revolution. As TN1 is a direct descendant of the Dee-geo-woo-gen cultivar, the source of the sd1 semidwarf gene, the sd1 gene can be defined through TN1. Also, TN1 is susceptible to the blast disease and is described as being drought-tolerant.

View Article and Find Full Text PDF

In plants, large numbers of R genes, which segregate as loci with alternative alleles conferring different levels of disease resistance to pathogens, have been maintained over a long period of evolution. The reason why hosts harbor susceptible alleles in view of their null contribution to resistance is unclear. In rice, a single copy gene, Pi-ta, segregates for 2 expressed clades of alleles, 1 resistant and the other susceptible.

View Article and Find Full Text PDF

Background: Pi-ta is a major blast resistant gene, introgressed from indica rice varieties. In this study, diversity of the Pi-ta gene of 47 Sri Lankan rice accessions was studied by bioinformatics, and the results were validated with molecular and disease reaction assays. Sequences of rice accessions at the locus Os12g0281300 were retrieved from Rice SNP-Seek Database, and the coding sequence of reference Pi-ta gene of cultivar Tetep (accession no.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!