Chickpea (Cicer arietinum L.) is of prime importance because of vital source of protein as major food legume. Globally, it is cultivated on large area to meet dietary requirements of humans. Climatic extremes (erratic rainfall, extreme high and low temperature) are key restrains for its production. Optimum sowing time is considered as an important factor to address climatic variations and to attain maximum yield. Foliar application of potassium (K) has also been reported to increase resistance against abiotic stresses. Similarly, exogenous application of plant based growth substances (bio-stimulants) like moringa leaf extract (MLE) are extensively used to enhance productivity of field crops. Therefore, current study was planned to evaluate the impact of foliar applied K and MLE on growth, physiology and productivity of kabuli chickpea grown under varying sowing dates. There were two sowing dates (normal sown; November 15 and late sown; December 15, 2020). Experiment was comprised of treatments i.e. control, water spray, foliar application of K at 1%, foliar application of MLE at 3% and combined application of K and MLE. Foliar applied K and MLE significantly improved physiological, biochemical and yield attributes of kabuli chickpea cultivated under normal and late sown conditions. Increase in growth and yield attributes like plant height, number of nodules per plant, nodules dry weight, branches and pods per plant, 100- grain weight, biological and grain yield were recorded in case of combined foliar application of K and MLE in normal and late sown chickpea. Maximum improvement in gas exchange attributes (stomatal conductance and transpiration rate), chlorophyll contents, antioxidants (catalase, superoxide dismutase and ascorbate peroxidase) and osmolytes (proline) were recorded with combined application of K and MLE in both sowing dates. Thus, combined applied K and MLE can be used to enhance productivity of kabuli chickpea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830639PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263323PLOS

Publication Analysis

Top Keywords

foliar application
20
kabuli chickpea
16
application mle
16
productivity kabuli
12
applied mle
12
sowing dates
12
late sown
12
application potassium
8
moringa leaf
8
leaf extract
8

Similar Publications

Drought adversely affects the growth and performance of plants. By contrast, the application of organic modifiers can improve plant growth by supplying nutrients and water. The influence of foliar application of organic fertilizer under water deficit conditions on growth traits, chemical composition, and fruit quality of tomato (Lycopersicon esculentum Mill.

View Article and Find Full Text PDF

Maize (Zea mays L.) faces significant challenges to its growth and productivity from heavy metal stress, particularly Chromium (Cr) stress, which induces reactive oxygen species (ROS) generation and damages photosynthetic tissues. This study aimed to investigate the effects of fulvic acid (FA) application, via foliar spray or root irrigation, on mitigating chromium stress in maize by evaluating its impact on antioxidant activity and growth parameters.

View Article and Find Full Text PDF

Nondestructively-measured leaf ammonia emission rates can partly reflect maize growth status.

Plant Physiol Biochem

January 2025

School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Engineering Research Center of Environmentally-friendly and Efficient Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:

A deep understanding of ammonia (NH) emissions from cropland can promote efficient crop production. To date, little is known about leaf NH emissions because of the lack of rapid detection methods. We developed a method for detecting leaf NH emissions based on portable NH sensors.

View Article and Find Full Text PDF

Genotype-dependent resilience mediated by melatonin in sweet corn.

BMC Plant Biol

January 2025

Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary.

Background: Water deficits, exacerbated by climate change and unpredictable weather, have become a significant global challenge to agricultural productivity. In this context, exogenous melatonin treatment is well documented as a stress alleviator; however, its effects on various biological processes, particularly in less-explored genotypes, remain understudied. This study aimed to enhance water deficit resilience in sweet corn by applying foliar melatonin to four genotypes-Messenger, Dessert, Royalty, and Tyson under two levels of water deprivation induced by polyethylene glycol at 8% and 12% concentrations in a hydroponic, controlled environment.

View Article and Find Full Text PDF

Background: Globally, salinity poses a threat to crop productivity by hindering plant growth and development via osmotic stress and ionic cytotoxicity. Plant extracts have lately been employed as exogenous adjuvants to improve endogenous plant defense mechanisms when grown under various environmental stresses, such as salinity. This study investigated the potential of melatonin (Mt; 0, 50, and 100 mM) as an antioxidant and licorice root extract (LRE; 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!