Exposures to vapors generated by small spills of organic solvents are common in the occupational hygiene practice. In these scenarios, contaminant mass release is exponentially decreasing, driven by an evaporation rate constant alpha (α). Knowing α is fundamental for adequately modeling peak concentrations and/or short-term exposures that occur and for achieving efficient occupational risk analysis and management. The purpose of this study was to measure alpha experimentally using a gravimetric approach in a controlled environment during solvent evaporation tests designed to simulate small spills of solvents. The effects of several factors on α were evaluated. Equations based on regression models derived from the experimental data were proposed for predicting α. Predictions were externally validated against experimental data. A total of 183 tests was performed. Data analyses found that alpha (α) values increased with vapor pressure, spill surface area-to-spill volume ratio, and air speed across the spill. Larger α were associated with petri dish containers compared to watch glasses. Three regression models were created for predicting α. They had four variables in common, namely vapor pressure, molecular weight, air speed above the liquid, and surface tension of the liquid. The fifth variable was either spill volume, spill surface area, or spill surface area-to-spill volume ratio. The R of the regression models were equal to 0.98. External validation showed mean relative errors of -32.9, -32.0, and -25.5%, respectively, with associated standard deviations of the relative errors of 17.7, 33.3, and 26.0%, respectively, and associated R of 0.92, 0.65, and 0.87, respectively. The proposed equations can be used for estimating α in exposure scenarios similar to those evaluated in this study. Moreover, these models constitute a step further in the improvement of knowledge on estimating evaporation rates for small spills of organic solvents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15459624.2022.2040736 | DOI Listing |
J Agromedicine
January 2025
Programa de Pós-Graduação em Saúde, Ambiente e Trabalho, Faculdade de Medicina da Bahia, Federal University of Bahia, Salvador, Brazil.
Objective: In 2019/2020, the Brazilian coast was affected by the largest oil spill disaster affecting the extent of the coastline recorded in tropical oceans. The impact on fishing areas and the prohibition of seafood sales and consumption exacerbated small-scale fishers' vulnerability. The small-scale fishers (SSFs) were the most active in protecting fishing territories, carrying out cleanup efforts without adequate personal protective equipment.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
Ann Work Expo Health
January 2025
Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St, Baltimore, MD 21205, United States.
The use of peracetic acid (PAA) as a general disinfectant has seen increasing usage in recent years, and although it is a strong irritant, exposure monitoring for PAA may often be difficult due to relatively high costs and the potential for interferences by other co-occurring chemicals such as hydrogen peroxide. These issues with exposure monitoring make modeling a potentially useful tool in exposure assessment of PAA if model parameters can be accurately determined. This study estimates the time-varying mass emission rate of PAA for use in exposure modeling by using the small spill model and examines the effect of various environmental conditions on the PAA evaporation rate, including surface roughness/substrate, general ventilation rate, and local wind speed.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Treeline Ecological Research, 21551 Twp Rd 520, Sherwood Park, Alberta, T8E 1E3, Canada.
Based on analysis of documents obtained in public databases and under freedom of information requests, this study assessed the Alberta Energy Regulator's (AER) monitoring and management of bitumen tailings spills. The AER's claims of no environmental impacts at any tailings spills lack corroborative environmental data. Claims of perfect spill recovery in 75% of tailings spills are not supported by credible evidence.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
Oil spill disasters lead to widespread and long-lasting social, economical, environmental and ecological impacts. Technical challenges remain for conventional static adsorption due to hydrodynamic instability under complex water-flow conditions, which results in low oil-capture efficiency, time delay and oil escape. To address this issue, we design a vortex-anchored filter inspired by the anatomy of deep-sea glass sponges (E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!