Combining neutron diffraction with pair distribution function analysis, we have uncovered hidden reduced symmetry in the correlated metallic perovskite, SrVO. Specifically, we show that both the local and global structures are better described using a GdFeO distorted (orthorhombic) model as opposed to the ideal cubic ABO perovskite type. Recent reports of imaginary phonon frequencies in the density functional theory (DFT)-calculated phonon dispersion for cubic SrVO suggest a possible origin of this observed non-cubicity. Namely, the imaginary frequencies computed could indicate that the cubic crystal structure is unstable at T = 0 K. However, our DFT calculations provide compelling evidence that point defects in the form of oxygen vacancies, and not an observable symmetry breaking associated with calculated imaginary frequencies, primarily result in the observed non-cubicity of SrVO. These experimental and computational results are broadly impactful because they reach into the thin-film and theoretical communities who have shown that SrVO is a technologically viable transparent conducting oxide material and have used SrVO to develop theoretical methods, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c03201DOI Listing

Publication Analysis

Top Keywords

oxygen vacancies
8
observed non-cubicity
8
imaginary frequencies
8
srvo
6
role phonons
4
phonons oxygen
4
vacancies non-cubic
4
non-cubic srvo
4
srvo combining
4
combining neutron
4

Similar Publications

The catalysts of Ni nanoparticles supported on ZrO, LaO and LaZrO were prepared and employed in photothermal catalytic DRM. High yield of H and CO (76.2 and 99.

View Article and Find Full Text PDF

Oxygen vacancies (V's) are of paramount importance in influencing the properties and applications of ceria (CeO). Yet, comprehending the distribution and nature of V's poses a significant challenge due to the vast number of electronic configurations and intricate many-body interactions among V's and polarons (Ce ions). In this study, we established a cluster expansion model based on first-principles calculations and statistical learning to decouple the interactions among the Ce ions and V's, thereby circumventing the limitations associated with sampling electronic configurations.

View Article and Find Full Text PDF

Quantum emitters in solid-state materials are highly promising building blocks for quantum information processing and communication science. Recently, single-photon emission from van der Waals materials has been reported in transition metal dichalcogenides and hexagonal boron nitride, exhibiting the potential to realize photonic quantum technologies in two-dimensional materials. Here, we report the generation of room temperature single-photon emission from exfoliated and thermally annealed single crystals of van der Waals α-MoO.

View Article and Find Full Text PDF

Anion vacancy engineered Cu/ZnInS-V/TiO-V S-scheme heterojunction for enhancing photocatalytic overall water splitting.

J Colloid Interface Sci

January 2025

National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091 China; Southwest United Graduate School, Kunming 650091 China. Electronic address:

Heterojunction materials for photocatalytic overall water splitting (POWS) become popular in recent times. However, even in the superior S-scheme heterojunction, the two semiconductor materials still do not have an efficient activity to separate and migrate photogenerated carriers. To further improve the charge separation and enhance the activity of POWS, a novel S-scheme heterojunction photocatalyst, Cu/ZnInS-V/TiO-V, was synthesized using solvothermal and calcination methods.

View Article and Find Full Text PDF

Defect engineering is considered one of the most powerful strategies for regulating the catalytic activity of electrocatalysts. A deep understanding of the defect-involved mechanism in electrocatalytic process is of great importance but remains a challenging task. In this study, an anionic Se-vacancy (V) was introduced into iron diselenide (FeSe) nanoarrays, enabling the catalyst to exhibit improved electrocatalytic performance for sulfion oxidation reaction (SOR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!