We report both the design of a high-throughput MICROFASP (a miniaturized filter aided sample preparation) system and its use for the comprehensive proteomic analysis of single blastomeres isolated from 50-cell stage embryos (∼200 ng of yolk-free protein/blastomere). A single run of the MICROFASP system was used to process 146 of these blastomeres in parallel. Three samples failed to generate signals presumably due to membrane clogging. Two cells were lost due to operator error. Of the surviving samples, 32 were analyzed using a Q Exactive HF mass spectrometer in survey experiments (data not included). The 109 remaining blastomeres were analyzed using a capillary LC-ESI-MS/MS system coupled to an Orbitrap Fusion Lumos mass spectrometer, which identified a total of 4189 protein groups and 40,998 unique peptides. On average, 3468 ± 229 protein groups and 14,525 ± 2437 unique peptides were identified from each blastomere, which is the highest throughput and deepest proteome coverage to date of single blastomeres at this stage of development. We also compared two dissociation buffers, Newport and calcium-magnesium-free (CMFM) buffers; the two buffers generated similar numbers of protein identifications (3615 total protein IDs from use of the Newport dissociation buffer and 3671 total protein IDs from use of the CMFM buffer).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8929430 | PMC |
http://dx.doi.org/10.1021/acs.analchem.1c04987 | DOI Listing |
Hepatol Commun
February 2025
Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322.
Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
January 2025
Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China.
Wound healing is a dynamic process involving multiple cell types and signaling pathways. Dermal sheath cells (DSCs), residing surrounding hair follicles, play a critical role in tissue repair, yet their regulatory mechanisms remain unclear. This study used single-cell proteomics with the mouse model to explore DSC function across different healing stages.
View Article and Find Full Text PDFGigascience
January 2025
Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany.
Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).
Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.
Iran J Basic Med Sci
January 2025
Graduate school, Shenyang Medical College, Shenyang. No. 146, Huanghe North Street, Shenyang, People's Republic of China.
Objectives: Particulate matter 2.5 (PM2.5), particles with an aerodynamic diameter less than 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!