Abundant reactive gliosis and neuroinflammation are typical pathogenetic hallmarks of brains in Parkinson's disease (PD) patients, but regulation mechanisms are poorly understood. We are interested in role of programmed death-1 (PD-1) in glial reaction, neuroinflammation and neuronal injury in PD pathogenesis. Using PD mouse model and PD-1 knockout (KO) mice, we designed wild-type-control (WT-CON), WT-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (WT-MPTP), PD-1-KO-control (KO-CON) and PD-1-KO-MPTP (KO-MPTP), and observed motor dysfunction of animal, morphological distribution of PD-1-positive cells, dopaminergic neuronal injury, glial activation and generation of inflammatory cytokines in midbrains by motor behavior detection, immunohistochemistry and western blot. WT-MPTP mouse model exhibited decrease of PD-1/Iba1-positive microglial cells in the substantia nigra compared with WT-CON mice. By comparison of four groups, PD-1 deficiency showed exacerbation in motor dysfunction of animals, decreased expression of TH protein and TH-positive neuronal protrusions. PD-1 deficiency enhanced microglial activation, production of proinflammatory cytokines like inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β and interleukin-6, and expression and phosphorylation of AKT and ERK1/2 in the substantia nigra of MPTP model. We concluded that PD-1 deficiency could aggravate motor dysfunction of MPTP mouse model by inducing microglial activation and neuroinflammation in midbrains, suggesting that PD-1 signaling abnormality might be possibly involved in PD pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-022-02758-xDOI Listing

Publication Analysis

Top Keywords

motor dysfunction
16
microglial activation
12
mouse model
12
pd-1 deficiency
12
programmed death-1
8
dysfunction mptp
8
mptp model
8
parkinson's disease
8
inducing microglial
8
activation neuroinflammation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!