Coronavirus disease 2019 (COVID-19) was primarily identified as a novel disease causing acute respiratory syndrome. However, as the pandemic progressed various cases of secondary organ infection and damage by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including a breakdown of the vascular barrier. As SARS-CoV-2 gains access to blood circulation through the lungs, the virus is first encountered by the layer of endothelial cells and immune cells that participate in host defense. Here, we developed an approach to study SARS-CoV-2 infection using vasculature-on-a-chip. We first modeled the interaction of virus alone with the endothelialized vasculature-on-a-chip, followed by the studies of the interaction of the virus exposed-endothelial cells with peripheral blood mononuclear cells (PBMCs). In an endothelial model grown on a permeable microfluidic bioscaffold under flow conditions, both human coronavirus (HCoV)-NL63 and SARS-CoV-2 presence diminished endothelial barrier function by disrupting VE-cadherin junctions and elevating the level of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, and angiopoietin-2. Inflammatory cytokine markers were markedly more elevated upon SARS-CoV-2 infection compared to HCoV-NL63 infection. Introduction of PBMCs with monocytes into the vasculature-on-a-chip upon SARS-CoV-2 infection further exacerbated cytokine-induced endothelial dysfunction, demonstrating the compounding effects of inter-cellular crosstalk between endothelial cells and monocytes in facilitating the hyperinflammatory state. Considering the harmful effects of SARS-CoV-2 on endothelial cells, even without active virus proliferation inside the cells, a potential therapeutic approach is critical. We identified angiopoietin-1 derived peptide, QHREDGS, as a potential therapeutic capable of profoundly attenuating the inflammatory state of the cells consistent with the levels in non-infected controls, thereby improving the barrier function and endothelial cell survival against SARS-CoV-2 infection in the presence of PBMC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207819PMC
http://dx.doi.org/10.1039/d1lc00817jDOI Listing

Publication Analysis

Top Keywords

sars-cov-2 infection
16
endothelial cells
12
sars-cov-2
9
angiopoietin-1 derived
8
derived peptide
8
respiratory syndrome
8
cells
8
interaction virus
8
barrier function
8
potential therapeutic
8

Similar Publications

Purpose: Local health systems form the basis for health system resilience. Leaders' standpoints are crucial in advancing resilience capacities and change. This study analysed how local health system leaders' approaches to change reflect health system resilience capacities.

View Article and Find Full Text PDF

Background: The Assessing Donor Variability and New Concepts in Eligibility (ADVANCE) study was a multicenter cross-organizational collaboration to collect data to inform possible changes in blood donor selection criteria for men who have sex with men. Multiple recruitment approaches were used, and these may be applicable to current efforts in LGBTQ+ community engagement to recruit new blood donors.

Methods: Fieldwork for ADVANCE was a partnership between blood collection organizations (BCOs) and LGBTQ+ community organizations.

View Article and Find Full Text PDF

Background: The sensitivity of reverse-transcription polymerase chain reaction (RT-PCR) is limited for diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Chest computed tomography (CT) is reported to have high sensitivity; however, given the limited availability of chest CT during a pandemic, the assessment of more readily available imaging, such as chest radiographs, augmented by artificial intelligence may substitute for the detection of the features of coronavirus disease 2019 (COVID-19) pneumonia.

Methods: We trained a deep convolutional neural network to detect SARS-CoV-2 pneumonia using publicly available chest radiography imaging data including 8,851 normal, 6,045 pneumonia, and 200 COVID-19 pneumonia radiographs.

View Article and Find Full Text PDF

Wastewater-based monitoring of antipyretics use during COVID-19 outbreak in China and its associated ecological risks.

Environ Res

December 2024

Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China. Electronic address:

At the end of 2022, a sudden policy shift in China triggered an unprecedented COVID-19 outbreak that led to a dramatic increase in the consumption of antipyretics. In this study, the occurrence of the two most commonly used antipyretics (ibuprofen and paracetamol) and their metabolites were analyzed in the wastewater of nine major cities in China, covering the periods before, during, and after the policy change. The remarkable surge after the policy change for ibuprofen and paracetamol reached 67 times (in Nanning) and 311 times (in Lanzhou) compared to pre-pandemic levels, respectively.

View Article and Find Full Text PDF

Objective: To outline the features of COVID-19 in Brazil through a countrywide telephone survey.

Methods: Data from the Telephone Survey of Risk Factors for Chronic Noncommunicable Diseases During the Pandemic (Covitel), a telephone survey of individuals aged 18 years or older from all macro-regions of Brazil, were used. The questionnaire included sociodemographic characteristics and outcomes related to COVID-19 infection, severity, vaccination, and use of masks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!