We report a new ready-to-use sensor for simultaneous determination of paraquat (PQ) and glyphosate (GLY) based on a graphite screen-printed electrode modified with a dual-molecularly imprinted polymer coated on a mesoporous silica-platinum core. Amino-mesoporous silica nanoparticles (MSN-NH) were first synthesized by a simple co-condensation method using tetraethyl orthosilicate and 3-aminopropyltrimethoxysilane. PtNPs were then decorated on the surface of MSN-NH by chemical reduction. Finally, the dual-MIP was successfully coated on the MSN-PtNP core. This 3D-surface-imprinting strategy enhances the conductivity and monodispersity of the MSN-PtNPs@d-MIP. Quantitative analysis was performed by differential pulse voltammetry with an oxidation current appearing at -0.95 V for PQ and +0.97 V for GLY. The dual-MIP sensor shows good linear calibration curves in the range of 0.025-500 μM for both analytes with detection limits of 3.1 nM and 4.0 nM for PQ and GLY, respectively. The dual-MIP sensor shows high selectivity and specificity, attributed to the increased affinity of the imprinted cavities formed on the polymer film for the target PQ and GLY molecules. The proposed dual-MIP sensor was successfully applied to detect PQ and GLY concentrations simultaneously in water samples. The ready-to-use dual-MIP sensor is well suited for water-quality control and on-site applications without sophisticated instrumentation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1ay02201fDOI Listing

Publication Analysis

Top Keywords

dual-mip sensor
16
simultaneous determination
8
determination paraquat
8
paraquat glyphosate
8
water samples
8
gly dual-mip
8
sensor
6
gly
5
dual-mip
5
fast sensitive
4

Similar Publications

Smart dual imprinted Origami 3D-ePAD for selective and simultaneous analysis of vanillylmandelic acid and 5-hydroxyindole-3-acetic acid carcinoid cancer biomarkers using graphene quantum dots coated with dual molecularly imprinted polymers.

Talanta

March 2024

Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Thailand. Electronic address:

Article Synopsis
  • Measuring biomarkers VMA and 5-HIAA is important for diagnosing conditions like neuroblastoma, hypertension, and depression, among others.
  • The study presents new sensors made from graphene quantum dots (GQDs) coated with molecularly imprinted polymers designed to selectively detect both biomarkers simultaneously in urine and plasma.
  • The resulting Origami 3D electrochemical device offers enhanced sensitivity and selectivity for VMA and 5-HIAA, achieving impressive detection limits and wide dynamic ranges for effective clinical testing.
View Article and Find Full Text PDF

Molecularly imprinted polymer dual electrochemical sensor for the one-step determination of albuminuria to creatinine ratio (ACR).

Talanta

December 2023

Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand. Electronic address:

The urinary albumin to creatinine ratio (ACR) is a convenient and accurate biomarker of chronic kidney disease (CKD). An electrochemical sensor for the quantification of ACR was developed based on a dual screen-printed carbon electrode (SPdCE). The SPdCE was modified with carboxylated multiwalled carbon nanotubes (f-MWCNTs) and redox probes of polymethylene blue (PMB) for creatinine and ferrocene (Fc) for albumin.

View Article and Find Full Text PDF

Nanoscale imprinting significantly increases the specific surface area and recognition capabilities of a molecularly imprinted polymer by improving accessibility to analytes, binding kinetics, and template removal. Herein, we present a novel synthetic route for a dual molecularly imprinted polymer (dual-MIP) of the carcinogen oxidative stress biomarkers 3-nitrotyrosine (3-NT) and 4-nitroquinolin-N-oxide (4-NQO) as coatings on graphene quantum-dot capped gold nanoparticles (GQDs-AuNPs). The dual-MIP was successfully coated on the GQDs-AuNPs core via a (3-mercaptopropyl) trimethoxysilane (MPTMS) linkage and copolymerization with the 3-aminopropyltriethoxysilane (APTMS) functional monomer.

View Article and Find Full Text PDF

Molecularly imprinted Ni-polyacrylamide-based electrochemical sensor for the simultaneous detection of dopamine and adenine.

Anal Chim Acta

April 2022

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China. Electronic address:

Molecularly imprinted polymer (MIP) membranes prepared in situ present several advantages: they maintain the original morphology, adhere strongly to the collector, and exhibit a controllable structure. In this study, a Ni-polyacrylamide (PAM)-MIP matrix was fabricated in situ on glassy carbon via the one-step electro-polymerization of AM monomers in the presence of Ni and template molecules. Ni ions were introduced as oxidants to promote AM polymerization and bulking agents to fabricate a three-dimensional porous PAM-MIP matrix.

View Article and Find Full Text PDF

We report a new ready-to-use sensor for simultaneous determination of paraquat (PQ) and glyphosate (GLY) based on a graphite screen-printed electrode modified with a dual-molecularly imprinted polymer coated on a mesoporous silica-platinum core. Amino-mesoporous silica nanoparticles (MSN-NH) were first synthesized by a simple co-condensation method using tetraethyl orthosilicate and 3-aminopropyltrimethoxysilane. PtNPs were then decorated on the surface of MSN-NH by chemical reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!