Polysaccharides are macromolecular complexes that have various biological activities. In vivo and in vitro studies have shown that polysaccharides play neuroprotective roles through multiple mechanisms; consequently, they have potential in the prevention and treatment of neurodegenerative diseases. This paper summarizes related research published during 2015-2020 and reviews advances in the understanding of the neuroprotective effects of bioactive polysaccharides. This review focuses on 15 bioactive polysaccharides from plants and fungi that have neuroprotective properties against oxidative stress, apoptosis, neuroinflammation, and excitatory amino acid toxicity mainly through the regulation of nuclear factor kappa-B, phosphatidylinositol-3-kinase/protein kinase B, mitogen-activated protein kinase, nuclear factor-E2-related factor 2/ hemeoxygenase-1, c-jun N-terminal kinase, protein kinase B-mammalian target of rapamycin, and reactive oxygen species-nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 signaling pathways. Natural bioactive polysaccharides have potential in the prevention and treatment of neurodegenerative diseases because of their advantageous characteristics, including multi-targeting, low toxicity, and synergistic effects. However, most of the recent related research has focused on cell and animal models. Future randomized clinical trials involving large sample sizes are needed to validate the therapeutic benefits of these neuroprotective polysaccharides in patients having neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848587 | PMC |
http://dx.doi.org/10.4103/1673-5374.335142 | DOI Listing |
PLoS One
January 2025
Glycologix, Inc., 100 Cummings Center, Beverly, Massachusetts, United States of America.
Chemical modification of naturally derived glycosaminoglycans (GAGs) expands their potential utility for applications in soft tissue repair and regenerative medicine. Here we report the preparation of a novel crosslinked chondroitin sulfate (~200 to 2000 kilodaltons) that is both soluble in aqueous solution and microfilterable. We refer to these materials as "SuperGAGs.
View Article and Find Full Text PDFChem Biodivers
January 2025
Nanjing Forestry University, Department of Food Science and Technology, Longpan Road 159, Nanjing, CHINA.
Ginkgo biloba (G. biloba) exocarp, a by-product of seed production, is produced in an amount of over 75,000 tons annually in China. However, due to the lack of suitable processing methods, it is predominantly discarded as agricultural waste, resulting in substantial waste of resource.
View Article and Find Full Text PDFPhytochem Anal
January 2025
College of Pharmacy, Xinjiang Medical University, Urumqi, China.
Introduction: Cistanche deserticola Ma (CD), an edible and medicinal plant native to Xinjiang, Inner Mongolia, and Gansu in China, is rich in bioactive polysaccharides known for their health-promoting properties. The polysaccharides of C. deserticola (CDPs) have been shown to possess a range of beneficial activities, including immunomodulatory, anti-aging, antioxidant, and anti-osteoporosis effects.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
Macrophage metabolism is closely linked to their phenotype and function, which is why there is growing interest in studying the metabolic reprogramming of macrophages. Bioactive glass (BG) S53P4 is a bioactive material used especially in bone applications. Additionally, BG S53P4 has been shown to affect macrophages, but the mechanisms through which the possible immunomodulatory effects are conveyed remain unclear.
View Article and Find Full Text PDFMar Drugs
January 2025
Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland.
A rise in antimicrobial resistance coupled with consumer preferences towards natural preservatives has resulted in increased research towards investigating antimicrobial compounds from natural sources such as macroalgae (seaweeds), which contain antioxidant, antimicrobial, and anticancer compounds. This study investigates the antimicrobial activity of compounds produced by the Irish seaweed against and , bacterial species which are relevant for food safety. Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), ultrasound-microwave-assisted extraction (UMAE), and conventional extraction technologies (maceration) were applied to generate extracts from , followed by their preliminary chemical composition (total phenolic content, total protein content, total soluble sugars) and antimicrobial activity (with minimum inhibitory concentration determined by broth microdilution methods), examining also the molecular weight distribution (via high performance size exclusion chromatography) and oligosaccharide fraction composition (via high-performance liquid chromatography) of the polysaccharides, as they were the predominant compounds in these extracts, aiming to elucidate structure-function relationships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!