A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Value of contrast-enhanced CT based radiomic machine learning algorithm in differentiating gastrointestinal stromal tumors with KIT exon 11 mutation: a two-center study. | LitMetric

PURPOSE Knowing the genetic phenotype of gastrointestinal stromal tumors (GISTs) is essential for patients who receive therapy with tyrosine kinase inhibitors. The aim of this study was to develop a radiomic algorithm for predicting GISTs with KIT exon 11 mutation. METHODS We enrolled 106 patients (80 in the training set, 26 in the validation set) with clinicopathologically confirmed GISTs from two centers. Preoperative and postoperative clinical characteristics were selected and analyzed to construct the clinical model. Arterial phase, venous phase, delayed phase, and tri-phase combined radiomics algorithms were generated from the training set based on contrast-enhanced computed tomography (CE-CT) images. Various radiomics feature selection methods were used, namely least absolute shrinkage and selection operator (LASSO); minimum redundancy maximum relevance (mRMR); and generalized linear model (GLM) as a machine-learning classifier. Independent predictive factors were determined to construct preoperative and postoperative radiomics nomograms by multivariate logistic regression analysis. The performances of the clinical model, radiomics algorithm, and radiomics nomogram in distinguishing GISTs with the KIT exon 11 mutation were evaluated by area under the curve (AUC) of the receiver operating characteristics. RESULTS Of 106 patients who underwent genetic analysis, 61 had the KIT exon 11 mutation. The combined radiomics algorithm was found to be the best prediction model for differentiating the expression status of the KIT exon 11 mutation (AUC = 0.836; 95% confidence interval [CI], 0.640-0.951) in the validation set. The clinical model, and preoperative and postoperative radiomics nomograms had AUCs of 0.606 (95% CI, 0.397-0.790), 0.715 (95% CI, 0.506-0.873), and 0.679 (95% CI, 0.468-0.847), respectively, with the validation set. CONCLUSION The radiomics algorithm could distinguish GISTs with the KIT exon 11 mutation based on CE-CT images and could potentially be used for selective genetic analysis to support the precision medicine of GISTs.

Download full-text PDF

Source
http://dx.doi.org/10.5152/dir.2021.21600DOI Listing

Publication Analysis

Top Keywords

kit exon
24
exon mutation
24
gists kit
12
validation set
12
preoperative postoperative
12
clinical model
12
radiomics algorithm
12
gastrointestinal stromal
8
stromal tumors
8
106 patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!