Resting-state EEG reflects intrinsic brain activity and its alteration represents changes in cognition that are related to neuropathology. Thereby, it provides a way of revealing the neurocognitive mechanisms underpinning chronic substance use. In addition, it is documented that some neurocognitive functions can recover following sustained abstinence. We present a systematic review to synthesize how chronic substance use is associated with resting-state EEG alterations and whether these spontaneously recover from abstinence. A literature search in Medline, PsycINFO, Embase, CINAHL, Web of Science, and Scopus resulted in 4088 articles, of which 57 were included for evaluation. It covered the substance of alcohol (18), tobacco (14), cannabis (8), cocaine (6), opioids (4), methamphetamine (4), and ecstasy (4). EEG analysis methods included spectral power, functional connectivity, and network analyses. It was found that long-term substance use with or without substance use disorder diagnosis was associated with broad intrinsic neural activity alterations, which were usually expressed as neural hyperactivation and decreased neural communication between brain regions. Some studies found the use of alcohol, tobacco, cocaine, cannabis, and methamphetamine was positively correlated with these changes. These alterations can partly recover from abstinence, which differed between drugs and may reflect their neurotoxic degree. Moderating factors that may explain results inconsistency are discussed. In sum, resting-state EEG may act as a potential biomarker of neurotoxic effects of chronic substance use. Recovery effects awaits replication in larger samples with prolonged abstinence. Balanced sex ratio, enlarged sample size, advanced EEG analysis methods, and transparent reporting are recommended for future studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/15500594221076347 | DOI Listing |
Elife
January 2025
Department of Neurology, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany.
Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers.
View Article and Find Full Text PDFNat Ment Health
January 2025
Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland.
Atypical face processing is commonly reported in autism. Its neural correlates have been explored extensively across single neuroimaging modalities within key regions of the face processing network, such as the fusiform gyrus (FFG). Nonetheless, it is poorly understood how variation in brain anatomy and function jointly impacts face processing and social functioning.
View Article and Find Full Text PDFIBRO Neurosci Rep
June 2025
Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Autonomous Sensory Meridian Response (ASMR) is an audio-visual phenomenon that has recently become popular. Many people have reported experiencing a tingling-like sensation through their body while watching audio/video clips known as ASMR clips. People capable of having such experiences have also reported improved overall well-being and feeling relaxed.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
School of Medicine, Tianjin University, Tianjin, China.
Individuals with high autistic traits (AT) encounter challenges in social interaction, similar to autistic persons. Precise screening and focused interventions positively contribute to improving this situation. Functional connectivity analyses can measure information transmission and integration between brain regions, providing neurophysiological insights into these challenges.
View Article and Find Full Text PDFJ Psychiatr Res
January 2025
Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT, USA.
Background: Schizophrenia (SZ) is a psychiatric disorder that often involves reduced social functioning. Frontal alpha asymmetry (FAA) is a neurophysiological marker extracted from electroencephalogram (EEG) data that is likely related to motivational and emotional tendencies, such as reduced motivation across various psychiatric disorders, including SZ. Therefore, it may offer a neurophysiological marker for social functioning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!