Resting-state EEG reflects intrinsic brain activity and its alteration represents changes in cognition that are related to neuropathology. Thereby, it provides a way of revealing the neurocognitive mechanisms underpinning chronic substance use. In addition, it is documented that some neurocognitive functions can recover following sustained abstinence. We present a systematic review to synthesize how chronic substance use is associated with resting-state EEG alterations and whether these spontaneously recover from abstinence. A literature search in Medline, PsycINFO, Embase, CINAHL, Web of Science, and Scopus resulted in 4088 articles, of which 57 were included for evaluation. It covered the substance of alcohol (18), tobacco (14), cannabis (8), cocaine (6), opioids (4), methamphetamine (4), and ecstasy (4). EEG analysis methods included spectral power, functional connectivity, and network analyses. It was found that long-term substance use with or without substance use disorder diagnosis was associated with broad intrinsic neural activity alterations, which were usually expressed as neural hyperactivation and decreased neural communication between brain regions. Some studies found the use of alcohol, tobacco, cocaine, cannabis, and methamphetamine was positively correlated with these changes. These alterations can partly recover from abstinence, which differed between drugs and may reflect their neurotoxic degree. Moderating factors that may explain results inconsistency are discussed. In sum, resting-state EEG may act as a potential biomarker of neurotoxic effects of chronic substance use. Recovery effects awaits replication in larger samples with prolonged abstinence. Balanced sex ratio, enlarged sample size, advanced EEG analysis methods, and transparent reporting are recommended for future studies.

Download full-text PDF

Source
http://dx.doi.org/10.1177/15500594221076347DOI Listing

Publication Analysis

Top Keywords

resting-state eeg
16
chronic substance
12
systematic review
8
recover abstinence
8
alcohol tobacco
8
eeg analysis
8
analysis methods
8
substance
7
abstinence
5
eeg
5

Similar Publications

Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers.

View Article and Find Full Text PDF

Atypical face processing is commonly reported in autism. Its neural correlates have been explored extensively across single neuroimaging modalities within key regions of the face processing network, such as the fusiform gyrus (FFG). Nonetheless, it is poorly understood how variation in brain anatomy and function jointly impacts face processing and social functioning.

View Article and Find Full Text PDF

Autonomous Sensory Meridian Response (ASMR) is an audio-visual phenomenon that has recently become popular. Many people have reported experiencing a tingling-like sensation through their body while watching audio/video clips known as ASMR clips. People capable of having such experiences have also reported improved overall well-being and feeling relaxed.

View Article and Find Full Text PDF

Individuals with high autistic traits (AT) encounter challenges in social interaction, similar to autistic persons. Precise screening and focused interventions positively contribute to improving this situation. Functional connectivity analyses can measure information transmission and integration between brain regions, providing neurophysiological insights into these challenges.

View Article and Find Full Text PDF

Social functioning and frontal alpha asymmetry in schizophrenia.

J Psychiatr Res

January 2025

Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT, USA.

Background: Schizophrenia (SZ) is a psychiatric disorder that often involves reduced social functioning. Frontal alpha asymmetry (FAA) is a neurophysiological marker extracted from electroencephalogram (EEG) data that is likely related to motivational and emotional tendencies, such as reduced motivation across various psychiatric disorders, including SZ. Therefore, it may offer a neurophysiological marker for social functioning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!