Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, three mono-dendronized β-cyclodextrin (βCD) derivatives (βCD-1G, βCD-2G, and βCD-3G) were used as multitasking containers of curcumin (CUR) to influence its aqueous solubility and tautomerism, both of which are related to its biological activity. We evaluated the relevant physicochemical properties of these containers associated with their potential hosting capacity. All mono-dendronized derivatives exhibited enhanced solubility in different solvents, including water, in comparison with native βCD. Gas-phase geometry optimizations by density functional theory (DFT) confirmed that none of the dendrons blocked the passage of CUR into the βCD cavity, and depending on the generation, different preorganization scenarios were promoted before complexation. Phase solubility diagrams showed that all the dendronized containers have superior performance for solubilizing CUR compared to native βCD. We proved that coprecipitation is most efficient than lyophilization for forming inclusion complexes (ICs) with dendronized containers. Even though βCD-3G with the largest 3G dendron exhibited the highest CUR loading, the complexation of CUR with βCD-2G provided the supramolecular system that contains CUR preferentially in its diketo tautomer, which is known for its antioxidant activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.1c09811 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!