Molecular materials that exhibit stimuli-responsive bistability are promising candidates for the development of molecular switches and sensors. We herein report on the coexistence of a wide thermal hysteretic spin crossover (SCO) effect and a thermally inducible metastable high-spin state at low temperatures achieved with the two new complexes [Fe(L)(NCX)] (X = S; Se), with L being (2-naphthyl-5-pyridyl-1,2,4-thiadiazole) and X = S () and Se (). Pronounced π-π-stacking of the aromatic side residues of the ligands enables strong intermolecular interactions, leading to abrupt SCO properties and broad magnetic hysteresis of 10 K for X = S and 58 K for X = Se. In this paper, we also present the pressure-induced spin-state switching around 0.8 GPa. A pronounced thermally induced excited spin state trapping (TIESST effect) is observed for the highly cooperative SCO compounds, which was experimentally followed by low-temperature single crystal structure analysis (20 K) and temperature-dependent Mössbauer spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c03491DOI Listing

Publication Analysis

Top Keywords

highly cooperative
8
pronounced magnetic
4
magnetic bistability
4
bistability highly
4
cooperative mononuclear
4
mononuclear [felncx]
4
[felncx] complexes
4
complexes molecular
4
molecular materials
4
materials exhibit
4

Similar Publications

Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.

View Article and Find Full Text PDF

Enzymatic Cascades for Stereoselective and Regioselective Amide Bond Assembly.

Angew Chem Int Ed Engl

January 2025

The University of Manchester, School of Chemistry & Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Amide bond formation is fundamental in nature and is widely used in the synthesis of pharmaceuticals and other valuable products. Current methods for amide synthesis are often step and atom inefficient, requiring the use of protecting groups, deleterious reagents and organic solvents that create significant waste. The development of cleaner and more efficient catalytic methods for amide synthesis remains an urgent unmet need.

View Article and Find Full Text PDF

Multifunctional CuBiS-BP@PEI Radiosensitizer with Enhanced Reactive Oxygen Species Activity for Multimodal Synergistic Therapy.

ACS Biomater Sci Eng

January 2025

Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.

Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the CuBiS-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed.

View Article and Find Full Text PDF

Background: Empirical evidence regarding temporal trends in cost per quality-adjusted life year (QALY) gained remains limited. This study investigates the evolution of cost-effectiveness for diabetes mellitus treatments over time.

Research Design And Methods: We analyzed cost-effectiveness analyses of anti-diabetic pharmaceuticals extracted from the Tufts Medical Center Cost-Effectiveness Analysis Registry (CEAR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!