A simple synthetic pathway to Au-NHC amido complexes is described. Syntheses and isolation of [Au(NHC)(NRR)] complexes, bearing various NHC ligands and NH-containing heterocycles under mild conditions are reported. The anticancer activity of these gold-complexes was investigated on three human cancer cell lines. A number of these show comparable or even better antiproliferative activity than cisplatin. Noteworthy is the non-toxicity of most of the complexes on normal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt00239fDOI Listing

Publication Analysis

Top Keywords

simple synthetic
8
synthetic entryway
4
entryway families
4
families nhc-gold-amido
4
complexes
4
nhc-gold-amido complexes
4
complexes antitumor
4
antitumor activity
4
activity simple
4
synthetic pathway
4

Similar Publications

Polyketide synthases (PKSs) are multidomain enzymatic assembly lines that biosynthesize a wide selection of bioactive natural products from simple building blocks. In contrast to their -acyltransferase (AT) counterparts, -AT PKSs rely on stand-alone ATs to load extender units onto acyl carrier protein (ACP) domains embedded in the core PKS machinery. -AT PKS gene clusters also encode stand-alone acyl hydrolases (AHs), which are predicted to share the overall fold of ATs but function like type II thioesterases (TEs), hydrolyzing aberrant acyl chains from ACP domains to promote biosynthetic efficiency.

View Article and Find Full Text PDF

To overcome the limitations of using large extrinsic chromophores for biological imaging, fluorescent unnatural α-amino acids have been widely adopted as intrinsic peptidic probes. Although various classes have been successfully utilised for imaging applications, novel amino acid probes readily prepared through operationally simple synthetic methodology are still required. Here, we report a new approach for the synthesis of unnatural α-amino acids a one-pot process involving activation and palladium-catalysed arylation of tyrosine.

View Article and Find Full Text PDF

Biocompatible covalent reactive groups (CRGs) play pivotal roles in several areas of chemical biology and the life sciences, including targeted covalent inhibitor design and preparation of advanced biologic drugs, such as antibody-drug conjugates. In this study, we present the discovery that the small, chlorinated polyketide natural product cyclohelminthiol II (CHM-II) acts as a new type of cysteine/thiol-targeting CRG incorporating both reversible and irreversible reactivity. We devise the first syntheses of four simple cyclohelminthols, (±)-cyclohelminthol I-IV, with selective chlorinations (at C and C) and a Ni-catalyzed reductive cross coupling between an enone, a vinyl bromide and triethylsilyl chloride as the key steps.

View Article and Find Full Text PDF

The quest for color-pure emitters for multicolor bioimaging as well as for ultrahigh definition organic light-emitting diodes demands facile design concepts to avoid tedious synthetic or computational trial-and-error procedures. We have recently presented a simple recipe to construct color-pure blue emitters, which combines basic resonance structure and frontier molecular orbital treatments; this recipe applies to multiresonant type emitters and allows to enlarge the chemical space toward novel structural motifs. In the current work, we show that such fundamental considerations further apply to the structurally entirely different family of xanthene dyes.

View Article and Find Full Text PDF

Ammonia or biogenic amines released by protein degradation during food spoilage have various ill effects on human health and the environment. Herein, an economical colorimetric bisphenol-based sensor was developed from inexpensive reagents and a simple synthetic method for detecting ammonia and monitoring food spoilage. The slightest addition of NH significantly changed the absorption of BP, which was reflected in the detection limit value for NH (7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!