We study the excited state absorption (ESA) properties of the four DNA bases (thymine, cytosine, adenine, and guanine) by different single reference quantum mechanical methods, namely, equation of motion coupled cluster singles and doubles (EOM-CCSD), singles, doubles and perturbative triples (EOM-CC3), and time-dependent density functional theory (TD-DFT), with the long-range corrected CAM-B3LYP functional. Preliminary results at the Tamm-Dancoff (TDA) CAM-B3LYP level using the maximum overlap method (MOM) are reported for thymine. In the gas phase, the three methods predict similar One Photon Absorption (OPA) spectra, which are consistent with the experimental results and with the most accurate computational studies available in the literature. The ESA spectra are then computed for the ππ* states (one for pyrimidine, two for purines) associated with the lowest-energy absorption band, and for the close-lying nπ* state. The EOM-CC3, EOM-CCSD and CAM-B3LYP methods provide similar ESA spectral patterns, which are also in qualitative agreement with literature RASPT2 results. Once validated in the gas phase, TD-CAM-B3LYP has been used to compute the ESA in chloroform, including solvent effects by the polarizable continuum model (PCM). The predicted OPA and ESA spectra in chloroform are very similar to those in the gas phase, most of the bands shifting by less than 0.1 eV, with a small increase of the intensities and a moderate destabilization of the nπ* state. Finally, ESA spectra have been computed from the minima of the lowest energy ππ* state, and found in line with the available experimental transient absorption spectra of the nucleosides in solution, providing further validation of our computational approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp04340d | DOI Listing |
Phys Rev Lett
December 2024
Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA.
The two-dimensional electron gas (2DEG) is a fundamental model, which is drawing increasing interest because of recent advances in experimental and theoretical studies of 2D materials. Current understanding of the ground state of the 2DEG relies on quantum Monte Carlo calculations, based on variational comparisons of different Ansätze for different phases. We use a single variational ansatz, a general backflow-type wave function using a message-passing neural quantum state architecture, for a unified description across the entire density range.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA.
The exploration of quantum phases in moiré systems has drawn intense experimental and theoretical efforts. The realization of honeycomb symmetry has been a recent focus. The combination of strong interaction and honeycomb symmetry can lead to exotic electronic states such as fractional Chern insulator, unconventional superconductor, and quantum spin liquid.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
School of Energy and Environmental Engineering, University of Science and Technology Beijing, 100083China.
Phthalates, known as phthalate esters (PAEs), are among the most ubiquitous pervasive env7ironmental endocrine disruptors (EEDs), extensively utilized globally in various facets of modern life due to their irreplaceable role as plasticizers. The exponential production and utilization of plastic goods have substantially escalated plastic waste accumulation. Consequently, PAEs have infiltrated the environment, contaminating food and drinking water reservoirs, posing notable threats to human health.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China School of Biomedical Engineering, Department of Polymer Science and Engineering, 96 Jinzhai Road, 230026, Hefei, CHINA.
Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wyb. St. Wyspiańskiego 27, 50-370 Wrocław, Poland.
We investigate a continuous electrochemical pH-swing method to capture CO from a gas phase. The electrochemical cell consists of a single cation-exchange membrane (CEM) and a recirculation of a mixture of salt and phenazine-based redox-active molecules. In the absorption compartment, this solution is saturated by CO from a mixed gas phase at high pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!