Asian corn borer, (Guenée), is an important insect pest of maize throughout most of Asia. The rind of a maize stalk is a key barrier against corn borer larvae boring into the plant. There is a need to better understand the relationship between stalk strength and larval injury, particularly for elite maize genotypes. To determine whether stalk strength is involved in maize resistance to larval injury, 39 maize lines were evaluated in 2012 and 2013. Rind penetration strength (RPS) was measured at tassel (VT) and milk (R3) stages as a possible stalk resistance trait for . RPS of primary ear internode at VT and R3 accounted for 37 and 38% of the variance in injury (measured as number of holes) for simulated (artificially infested) first and second generation , respectively. Relationships between stalk RPS values and tunnel length were weak. Results suggest that harder stalks have enhanced resistance to stalk boring but not to pith feeding or tunneling of larvae. The RPS measures could provide classical maize breeders an important tool for evaluating stalk strength and corn borer resistance in maize. The assessments should focus on the internodes primary ear or above/below primary ear during both VT stage for first generation and R3 stage for second generation resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814773 | PMC |
http://dx.doi.org/10.1002/pld3.381 | DOI Listing |
Bull Entomol Res
January 2025
College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China.
The Asian corn borer, (Guenée), emerges as a significant threat to maize cultivation, inflicting substantial damage upon the crops. Particularly, its larval stage represents a critical point characterised by significant economic consequences on maize yield. To manage the infestation of this pest effectively, timely and precise identification of its larval stages is required.
View Article and Find Full Text PDFBull Entomol Res
January 2025
College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China.
The Asian corn borer (ACB), (Guenée, 1854), is a serious pest of several crops, particularly a destructive pest of maize and other cereals throughout most of Asia, including China, the Philippines, Indonesia, Malaysia, Thailand, Sri Lanka, India, Bangladesh, Japan, Korea, Vietnam, Laos, Myanmar, Afghanistan, Pakistan and Cambodia. It has long been known as a pest in South-east Asia and has invaded other parts of Asia, Solomon Islands, parts of Africa and certain regions of Australia and Russia. Consequently, worldwide efforts have been increased to ensure new control strategies for management.
View Article and Find Full Text PDFInsects
November 2024
Department of Entomology, LSU Agricultural Center, Baton Rouge, LA 70803, USA.
The Mexican rice borer, (Lepidoptera: Crambidae) is an economically important pest of sugarcane, rice, and corn in Louisiana, Texas, and Mexico. This pest is considered invasive in the US and is expanding its range northward. Due to its subtropical origin, 's northern distribution might be limited by cold tolerance.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Developing simple and efficient multi-gene expression systems is crucial for multi-trait improvement or bioproduction in transgenic plants. In previous research, an -based bicistronic system from the nonpathogenic fungus efficiently expressed multiple enzyme proteins in yeast and maize, and the heterologous enzymes successfully performed their catalytic activity to reconstruct the biosynthetic pathway in the host organism. Unlike enzyme proteins, some heterologous functional proteins (such as insecticidal proteins) are dose-dependent and they need to express sufficient levels to perform their biological functions.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
Plant natural products are crucial in defending against herbivorous insects and are widely used in pest control, yet their mechanisms remain complex and insufficiently studied. This study employed a reverse strategy to investigate the mechanism of camptothecin (CPT), a botanical pesticide. By using a CPT-based chemical probe coupled with proteomic analysis, immune-related proteins, including those involved in prophenoloxidase (PPO) activation and antimicrobial peptide (AMP) synthesis, were identified in the Asian corn borer, .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!