Introduction: A systematic analysis of clinical trials was performed in order to assess the effectiveness and risks of bilateral renal denervation (RDN) in patients with chronic heart failure with reduced ejection fraction (HFrEF).

Methods: A systematic review was conducted of all clinical trials exploring the effectiveness of RDN in patients with HF who had reduced (<50%) EF. Primary outcomes were NYHA class, 6-min walk test, N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels, left ventricular ejection fraction (LVEF) and other cardiac parameters including left ventricular end-systolic diameter (LVESD), left ventricular end-diastolic diameter (LVEDD), and left atrium diameter (LAD). Secondary outcomes were systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), glomerular filtration rate (GFR), and creatinine.

Results: Seven studies were included in this analysis. From baseline to 6 months after RDN, the pooled mean NYHA class was decreased (mean difference [MD], -0.9; 95% confidence interval [CI], -1.6 to -0.2; P = 0.018), the mean 6-min walk test was increased (MD, 79.5 m; 95% CI, 26.9 to 132.1; P = 0.003), and the average NT-proBNP level was decreased (MD, -520.6 pg/mL; 95% CI, -1128.4 to 87.2; P = 0.093). Bilateral RDN increased the LVEF (MD, 5.7%; 95% CI, 1.6 to 9.6; P = 0.004), decreased the LVESD (MD, -0.4 cm; 95% CI, -0.5 to -0.2; P < 0.001), decreased the LVEDD (MD, -0.5 cm; 95% CI, -0.6 to -0.3; P < 0.001), and decreased the LAD (MD, -0.4 cm; 95% CI, -0.8 to 0; P = 0.045). In addition, RDN significantly decreased systolic BP (MD, -9.4 mmHg; 95% CI, -16.3 to -2.4; P = 0.008) and diastolic BP (MD, -4.9 mmHg; 95% CI, -9.5 to -0.4; P = 0.033), and decreased HR (MD, -4.5 bpm; 95% CI, -8.2to -0.9; P = 0.015). RDN did not significantly change GFR (MD, 7.9; 95% CI, -5.0 to 20.8; P = 0.230), or serum creatinine levels (MD, -7.2; 95% CI, -23.7 to 9.4; P = 0.397).

Conclusion: Bilateral RDN appears safe and well-tolerated in patients with HF. RDN improved the signs and symptoms of HF and slightly decreased systolic and diastolic BP without affecting renal function in the clinical trials performed to date.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814903PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e08847DOI Listing

Publication Analysis

Top Keywords

renal denervation
8
heart failure
8
failure reduced
8
reduced ejection
8
ejection fraction
8
systematic review
8
clinical trials
8
rdn patients
8
safety efficacy
4
efficacy renal
4

Similar Publications

Background Cardiorenal syndrome (CRS) refers to the bidirectional interactions between the acutely or chronically dysfunctioning heart and kidney that lead to poor outcomes. Due to the evolving literature on renal impairment and heart failure with preserved ejection fraction (HfpEF), this review aimed to highlight the pathophysiological pathways, diagnosis using imaging and biomarkers and management of CRS in patients with HFpEF. Further studies are needed to validate the use of novel biomarkers, especially for early diagnosis and prognostication.

View Article and Find Full Text PDF

Effects of Sympathetic Denervation in Metabolism Regulation: A Novel Approach for the Treatment of MASLD?

Cardiol Rev

January 2025

From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece.

Although metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease, has become the most common chronic liver disorder, its complex pathophysiology has not been fully elucidated up to date. A correlation between elevated sympathetic activation and MASLD has been highlighted in recent preclinical and clinical studies. Furthermore, increased sympathetic activity has been associated with the main mechanisms involved in MASLD, such as lipid accumulation in the liver, insulin resistance, and metabolic dysregulation, while it has been also correlated with the progression of MASLD, leading to liver fibrosis.

View Article and Find Full Text PDF

Renal denervation for hypertension.

Nat Rev Cardiol

January 2025

Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA.

Innovative therapies for hypertension are desperately needed given the rising prevalence and falling rates of control of hypertension despite an abundance of available medical therapies. Procedural interventions lower blood pressure without depending on adherence to medications, and endovascular renal denervation (RDN) is the interventional procedure with the best evidence base for the treatment of hypertension. After nearly two decades of study, with major refinements to devices, technique and trial design, two different systems for RDN received approval from the FDA in late 2023 for the treatment of hypertension.

View Article and Find Full Text PDF

Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.

View Article and Find Full Text PDF

Acute electrical stimulation of the common peroneal nerve (cPNS) has been shown to cause an immediate reduction in systolic blood pressure (SBP) in spontaneous hypertense rats (SHR), but the effect of this treatment in sub-chronic ambulatory SBP is unknown. Here we developed an implantable wireless WNClip neural stimulator to test the efficacy of 5-week cPNS as a treatment for hypertension. Daily cPNS 2 Hz monophasic stimulation at threshold for 8 minutes every day for five weeks, reduced SBP in WKY animals by -4 mm Hg, and in SHR animals by -21 mmHg in week 5 (p < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!