The steps involved in the initial assembly of apolipoproteins and lipids into supramolecular arrays (nascent lipoprotein particles) are largely unknown. Examination of the proteolytic processing and compartmentalization of the primary translation products of apolipoprotein mRNAs represents one approach to deciphering the molecular details of lipoprotein assembly. The structures of the primary translation products of seven mammalian apolipoprotein mRNAs has been determined in the past several years. The organization of apolipoprotein signal peptides is typical of eukaryotic prepeptides, although an unusual degree of sequence conservation is present among the signal segments of apo AI, AIV, and E. For those apolipoprotein sequences studied in detail, SRP-dependent cotranslational translocation and proteolytic processing appears to be highly efficient and results in sequestration of the processed protein within the lumen of the endoplasmic reticulum (ER). However the mechanism by which these lipid-binding proteins avoid arrest during their translocation through the lipid bilayer of the ER membrane remains obscure. The two principal human HDL apolipoproteins undergo novel extracellular post-translational proteolytic processing, which results in removal of nonhomologous propeptides. The proteases responsible for proapo AI and AII processing appear to be different. The processing of these proapolipoproteins provides a potential series of steps for regulating the ordered assembly of HDL constituents.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10409238609115900DOI Listing

Publication Analysis

Top Keywords

proteolytic processing
16
primary translation
12
translation products
12
apolipoprotein mrnas
12
processing compartmentalization
8
compartmentalization primary
8
products mammalian
8
mammalian apolipoprotein
8
apolipoprotein
5
processing
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!