Background: There is much evidence that confirms the inextricable link between inflammation and malignancy. Inflammation-related regulators were involved in the progression of kidney renal clear cell carcinoma (KIRC). However, the predictive role of single gene biomarkers is inadequate, and more accurate prognostic models are necessary. We undertook the current research to construct a robust inflammation-related gene signature that could stratify patients with KIRC.

Methods: The transcriptome sequencing data along with clinicopathologic information of KIRC were obtained from TCGA. A list of inflammation-related genes was acquired from the Molecular Signatures Database. Using the RNA-seq and survival time data from the TCGA training cohort, an inflammation-related gene signature was built using bioinformatic methods, and its performance in predicting patient prognosis was assessed by Kaplan-Meier and ROC curve analyses. Furthermore, we explored the association of risk score with immune score, stromal score, tumor immune-infiltrating cells (TIICs), immunosuppressive molecules, m6A regulators, and autophagy-related biomarkers.

Results: Herein, nine inflammation-related hub genes (ROS1, PLAUR, ACVR2A, KLF6, GABBR1, APLNR, SPHK1, PDPN, and ADORA2B) were determined and used to build a predictive model. All sets, including training set, four testing sets, and the entire TCGA group, were divided into two groups (low and high risk), and Kaplan-Meier curves all showed an adverse prognosis for patients in the high-risk group. ESTIMATE algorithm revealed a higher immune score in the high-risk subgroup. CIBERSORT algorithm illustrated that the high-risk group showed higher-level immune infiltrates. Furthermore, LAG3, TIGIT, and CTLA4 were overexpressed in the high-risk subgroup and positively associated with risk scores. Moreover, except for METTL3 and ALKBH5, the other m6A regulators decreased in the high-risk subgroup.

Conclusions: In conclusion, a novel inflammation-related gene signature comprehensively constructed in the current study may help stratify patients with KIRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820901PMC
http://dx.doi.org/10.1155/2022/2559258DOI Listing

Publication Analysis

Top Keywords

inflammation-related gene
16
gene signature
16
kidney renal
8
renal clear
8
clear cell
8
cell carcinoma
8
stratify patients
8
immune score
8
m6a regulators
8
high-risk group
8

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Chinese University of Hong Kong, Hong Kong, Hong Kong, Hong Kong.

Background: Nucleotide-binding domain and leucine-rich repeat (LRR)-containing family protein 3 (NLRP3) is involved in neuroinflammation in Alzheimer's Disease (AD). Single nucleotide polymorphisms (SNPs) in the NLRP3 gene are associated with the risk of AD in different populations, however the relationship between NLRP3 SNPs and Hong Kong population has not been studied.

Method: In this study,12 intron SNPs and 2 exon SNPs were genotyped in 233 healthy controls and 323 mild cognitive impairments (MCI) patients from Hong Kong.

View Article and Find Full Text PDF

Adenylate kinase 5 deficiency impairs epididymal white adipose tissue homeostasis and decreases fat mass.

J Vet Sci

December 2024

Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.

Importance: The brain and adipose tissue interact metabolically, and if there is a problem with the energy metabolism of the brain, it cannot maintain the energy balance with the adipose tissue. Therefore, when adenylate kinase 5 (), which regulates energy metabolism in the brain, is knocked out, problems with lipid metabolism may occur.

Objective: We aimed to elucidate the metabolic function and phenotype of , a gene with an unknown function in metabolism.

View Article and Find Full Text PDF

DNA methylation modifications are an important mechanism affecting the process of atherosclerosis (AS). Previous studies have shown that Galectin-8 (GAL8) DNA methylation level is associated with sudden death of coronary heart disease or acute events of coronary heart disease. However, the mechanism of GAL8 DNA methylation and gene expression in AS has not been elucidated, prompting us to carry out further research on it.

View Article and Find Full Text PDF

Background: Cold inducible RNA-binding protein (CIRP) is an important danger-associated molecular pattern involved in tissue-specific and systemic inflammation related to inflammation and Alzheimer's disease (AD). However, the precise roles and mechanism of CIRP in the functional changes in astrocytes during the development of AD are still unknown. This study aimed to assess gene expression alterations in astrocytes after they overexpress CIRP (oe-CIRP) and to explore the relationship between abnormal CIRP expression and AD.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is a disabling systemic autoimmune disease worldwide; however, its molecular pathway remains largely unknown. Thus, this study aimed to explore the effects of receptor-interacting serine/threonine kinase 2 (RIPK2) on RA progression and its underlying mechanism.

Material And Methods: RIPK2 expression was analyzed using real-time quantitative polymerase chain reaction, immunohistochemical staining, and Western blot (WB) analysis in RA synovial tissues or cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!