Oocyte maturation arrest is a disease that produces immature oocytes and cannot be mature after culturing , which leads to female primary infertility. We aimed to summarize nine representative patients in our center to retrospectively analyze the genetic variants and clinical characteristics of oocyte maturation arrest. This study examined and analyzed nine families with oocyte maturation arrest. Whole-exome sequencing (WES) of the probands was performed to detect the pathogenic variants. Sanger sequencing verified the WES findings in patients and available parents. ExAC database was used to search the variant frequency. The variants were assessed by pathogenicity and conservational property prediction analysis and according to the American College of Medical Genetics and Genomics (ACMG). Phenotypes of oocytes were evaluated by a light microscopy, and the phenotype-genotype correlation was also evaluated. Nine pathogenic variants in five genes were detected in nine patients, of which three were novel variants, including [c.1374A > G (p. Ile458Met)] and [1289-1291del TCC (p. Leu430del)] and [c.1543C > T (p. Pro515Ser)]. Nine variants were predicted to be pathogenic, resulting in different types of oocyte maturation arrest and clinical phenotypes. Three novel pathogenic variants were identified, enabling the expansion of the gene variant spectrum. The related pathogenic mutations of the , , and genes were highly suggestive of being causative of oocyte maturation arrest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819080PMC
http://dx.doi.org/10.3389/fgene.2022.772143DOI Listing

Publication Analysis

Top Keywords

oocyte maturation
24
maturation arrest
24
pathogenic variants
12
three novel
8
variants
7
oocyte
6
maturation
6
arrest
6
pathogenic
5
gene spectrum
4

Similar Publications

Chlorogenic acid (CGA) has strong antioxidant properties. In order to improve the low maturation rate and poor vitrification freezing effect of sheep oocytes caused by oxidative stress. In this study, oocytes from 200 2-3-year-old Kazakh sheep were collected, and different concentrations of CGA were added to the maturation medium and vitrification freezing solution to study the effects of CGA on the maturation rate, cleavage rate, blastocyst rate, reactive oxygen species (ROS) and glutathione (GSH) levels, mitochondrial membrane potential, and the expression levels of oxidation and apoptosis-related genes in sheep oocytes.

View Article and Find Full Text PDF

Formononetin promotes porcine oocytes maturation and improves embryonic development by reducing oxidative stress.

Front Cell Dev Biol

January 2025

Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.

Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation and embryonic development. Conventionally, antioxidants have been applied systems to improve oocyte maturation and blastocyst rates. Formononetin (FMN) is a flavonoid that has been shown to have various pharmacological effects, including antioxidants.

View Article and Find Full Text PDF

Extracellular vesicles, or exosomes, are produced by every type of cell and contain metabolites, proteins, lipids, and nucleic acids. Their role in health and disease is to influence different aspects of cell biology and to act as intermediaries between cells. Follicular fluid exosomes or extracellular vesicles (FF-EVs) secreted by ovarian granulosa cells are critical mediators of ovary growth and maturation.

View Article and Find Full Text PDF

The toxicity of tris (2-butoxyethyl) phosphate (TBOEP) has been extensively investigated because of its prevalence in the environment. Nevertheless, the risk factors associated with maternal transmission are poorly understood. In this study, sexually mature female zebrafish were treated with TBOEP (0, 20, 100, and 500 μg/L) for 30 days and were mated with unexposed males.

View Article and Find Full Text PDF

Monitoring selenium (Se) concentrations in fish ovaries is an important tool for evaluating the ecological risk posed by Se in aquatic systems. Most guidance recommends sampling fish ovaries as closely as possible to when fish spawn on the premise that Se is mobilized from the liver to the ovary during vitellogenesis, and therefore, sampling ovaries during the early phases of oocyte maturation may underestimate egg Se concentrations at the time of spawning. In this study, we evaluated ovary Se data from two species with synchronous oocyte development (Ptychocheilus oregonensis and Prosopium williamsoni), one species with asynchronous oocyte development (Richardsonius balteatus), and one where the mode of development is unclear (Mylocheilus caurinus).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!