Background: Leukocytes contribute to tissue damage after cerebral ischemia; however, the mechanisms underlying this process are still unclear. This study investigates the temporal and spatial relationship between vascular leukocyte recruitment and tissue damage and aims to uncover which step of the leukocyte recruitment cascade is involved in ischemic brain injury.

Methods: Male wild-type, ICAM-1-deficient, anti-CD18 antibody treated, or selectin-deficient [fucusyltransferase (FucT IV/VII)] mice were subjected to 60 min of middle cerebral artery occlusion (MCAo). The interaction between leukocytes and the cerebrovascular endothelium was quantified by fluorescence microscopy up to 15 h thereafter. Temporal dynamics of neuronal cell death and leukocyte migration were assessed at the same time points and in the same tissue volume by histology.

Results: In wild-type mice, leukocytes started to firmly adhere to the wall of pial postcapillary venules two hours after reperfusion. Three hours later, neuronal loss started and 13 h later, leukocytes transmigrated into brain tissue. Loss of selectin function did not influence this process. Application of an anti-CD18 antibody or genetic deletion of ICAM-1, however, significantly reduced tight adhesion of leukocytes to the cerebrovascular endothelium (-60%; < 0.01) and increased the number of viable neurons in the ischemic penumbra by 5-fold ( < 0.01); the number of intraparenchymal leukocytes was not affected.

Conclusions: Our findings suggest that ischemia triggers only a transient adhesion of leukocytes to the venous endothelium and that inhibition of this process is sufficient to partly prevent ischemic tissue damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818753PMC
http://dx.doi.org/10.3389/fneur.2021.807658DOI Listing

Publication Analysis

Top Keywords

tissue damage
16
adhesion leukocytes
12
neuronal cell
8
cell death
8
damage cerebral
8
cerebral ischemia
8
leukocyte recruitment
8
anti-cd18 antibody
8
leukocytes cerebrovascular
8
cerebrovascular endothelium
8

Similar Publications

In vivo bioengineered tooth formation using decellularized tooth bud extracellular matrix scaffolds.

Stem Cells Transl Med

December 2024

Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States.

The use of dental implants to replace lost or damaged teeth has become increasingly widespread due to their reported high survival and success rates. In reality, the long-term survival of dental implants remains a health concern, based on their short-term predicted survival of ~15 years, significant potential for jawbone resorption, and risk of peri-implantitis. The ability to create functional bioengineered teeth, composed of living tissues with properties similar to those of natural teeth, would be a significant improvement over currently used synthetic titanium implants.

View Article and Find Full Text PDF

Background: Methotrexate (MTX) is an agent used in the treatment of many neoplastic and non-neoplastic diseases and is known to cause oxidative damage in normal tissues. Curcumin (Cur) is a natural polyphenol compound with powerful antioxidant and antiapoptotic effects. In this study we investigate the effects of Cur on MTX-induced ovarian damage.

View Article and Find Full Text PDF

Jie-Geng-Tang (JGT), composed of Platycodon grandiflorus (Jacq.) A. DC and Glycyrrhiza uralensis Fisch, is widely used in traditional Chinese medicine for its potential effects in preventing pulmonary fibrosis (PF).

View Article and Find Full Text PDF

Dilute Povidone-Iodine Irrigation: The Science of Molecular Iodine (I2) Kinetics and Its Antimicrobial Activity.

J Am Acad Orthop Surg

January 2025

From the UC Davis Department of Orthopaedic Surgery, Sacramento, CA.

Dilute povidone-iodine (polyvinylpyrrolidone iodine [PVP-I]) irrigation in spine surgery and total joint arthroplasty has seen a rapid and substantial increase in its use during the past decade. Yet, most surgeons do not know the chemistry and biochemistry that explain its efficacy in preventing infections. PVP-I forms a complex with molecular iodine (I2), facilitating the delivery of I2 to the membrane of the infectious organism.

View Article and Find Full Text PDF

Background: The innate immune response aims to prevent pathogens from entering the organism and/or to facilitate pathogen clearance. Innate immune cells, such as macrophages, mast cells (MCs), natural killer cells and neutrophils, bear pattern recognition receptors and are thus able to recognize common molecular patterns, such as pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs), the later occurring in the context of neuroinflammation. An inflammatory component in the pathology of otherwise "primary cerebrovascular and neurodegenerative" disease has recently been recognized and targeted as a means of therapeutic intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!