Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/d41586-022-00304-2 | DOI Listing |
Brain Imaging Behav
January 2025
Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China.
Bipolar disorder (BD) is a complex psychiatric condition marked by significant mood fluctuations that deeply affect quality of life. Understanding the neural mechanisms underlying BD is critical for improving diagnostic accuracy and developing more effective treatments. This study utilized resting-state functional magnetic resonance imaging (rs-fMRI) to investigate functional connectivity within the ventral and dorsal attention networks in 52 patients with BD and 51 healthy controls.
View Article and Find Full Text PDFBrain Topogr
January 2025
Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
EEG involves recording electrical activity generated by the brain through electrodes placed on the scalp. Imagined speech classification has emerged as an essential area of research in brain-computer interfaces (BCIs). Despite significant advances, accurately classifying imagined speech signals remains challenging due to their complex and non-stationary nature.
View Article and Find Full Text PDFRadiology
January 2025
From the Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Fl, Rm 313, New York, NY 10016 (S.S.W., J.V., R.K., E.H.P., J.F.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, University Hospital Tübingen, Tübingen, Germany (S.S.W.); Department of Radiology, University Hospital Basel, Basel, Switzerland (J.V.); Department of Radiology, Hospital do Coraçao, São Paulo, Brazil (T.C.R.); Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), London, United Kingdom (D.D.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Department of Radiology, Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Medscanlagos Radiology, Cabo Frio, Brazil (A.S.); Centre for Data Analytics, Bond University, Gold Coast, Australia (S.E.S.); Siemens Healthineers AG, Erlangen, Germany (I.B.); and Siemens Medical Solutions USA, Malvern, Pa (G.K.).
Background Deep learning (DL) methods can improve accelerated MRI but require validation against an independent reference standard to ensure robustness and accuracy. Purpose To validate the diagnostic performance of twofold-simultaneous-multislice (SMSx2) twofold-parallel-imaging (PIx2)-accelerated DL superresolution MRI in the knee against conventional SMSx2-PIx2-accelerated MRI using arthroscopy as the reference standard. Materials and Methods Adults with painful knee conditions were prospectively enrolled from December 2021 to October 2022.
View Article and Find Full Text PDFSyst Biol Reprod Med
December 2025
Department of Mathematics and Computer Science, Laboratory of Analysis, Modeling and Simulation, Faculty of Sciences Ben M'sik, Hassan II University of Casablanca, Casablanca, Morocco.
Infertility has emerged as a significant public health concern, with assisted reproductive technology (ART) is a last-resort treatment option. However, ART's efficacy is limited by significant financial cost and physical discomfort. The aim of this study is to build Machine learning (ML) decision-support models to predict the optimal range of embryo numbers to transfer, using data from infertile couples identified through literature reviews.
View Article and Find Full Text PDFProtein Sci
February 2025
MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
An important step of mainstream protein structure prediction is to model the 3D protein structure based on the predicted 2D inter-residue geometric information. This folding step has been integrated into a unified neural network to allow end-to-end training in state-of-the-art methods like AlphaFold2, but is separately implemented using the Rosetta folding environment in some traditional methods like trRosetta. Despite the inferiority in prediction accuracy, the conventional approach allows for the sampling of various protein conformations compatible with the predicted geometric constraints, partially capturing the dynamic information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!