Aging and reduced exposure to environmental microbes can both potentiate neuroinflammatory responses. Prior studies indicate that immunization with the immunoregulatory and anti-inflammatory bacterium, Mycobacterium vaccae (M. vaccae), in aged rats limits neuroimmune activation and cognitive impairments. However, the mechanisms by which M. vaccae immunization ameliorates age-associated neuroinflammatory "priming" and whether microglia are a primary target remain unclear. Here, we investigated whether M. vaccae immunization protects against microglia morphological changes in response to aging. Adult (3 mos) and aged (24 mos) Fisher 344 × Brown Norway rats were immunized with either M. vaccae or vehicle once every week for 3 weeks. Aging led to elevated Iba1 immunoreactivity, microglial density, and deramification of microglia processes in the hippocampus and amygdala but not other brain regions. Additionally, aged rats exhibited larger microglial somas in the dorsal hippocampus, suggestive of a more activated phenotype. Notably, M. vaccae treatment ameliorated indicators of microglia activation in both the amygdala and hippocampus. While changes in morphology appeared to be region-specific, gene markers indicative of microglia activation were upregulated by age and lowered in response to M. vaccae in all brain regions evaluated. Taken together, these data suggest that peripheral immunization with M. vaccae quells markers of age-associated microglia activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828872PMC
http://dx.doi.org/10.1038/s41598-022-05275-yDOI Listing

Publication Analysis

Top Keywords

microglia activation
16
vaccae immunization
12
mycobacterium vaccae
8
activation amygdala
8
amygdala hippocampus
8
vaccae
8
aged rats
8
brain regions
8
microglia
7
immunization
5

Similar Publications

Cholesterol metabolites modulate ionotropic P2X4 and P2X7 receptor current in microglia cells.

Neuropharmacology

January 2025

Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy. Electronic address:

The central nervous system is a well-known steroidogenic tissue producing, among others, cholesterol metabolites such as neuroactive steroids, oxysterols and steroid hormones. It is well known that these endogenous molecules affect several receptor classes, including ionotropic GABAergic and NMDA glutamatergic receptors in neurons. It has been shown that also ionotropic purinergic (P2X) receptors are cholesterol metabolites' targets.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD.

View Article and Find Full Text PDF

Crisdesalazine alleviates inflammation in an experimental autoimmune encephalomyelitis multiple sclerosis mouse model by regulating the immune system.

BMC Neurosci

January 2025

Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.

Microglia/macrophages participate in the development of and recovery from experimental autoimmune encephalomyelitis (EAE), and the macrophage M1 (pro-inflammatory)/M2 (anti-inflammatory) phase transition is involved in EAE disease progression. We evaluated the efficacy of crisdesalazine (a novel microsomal prostaglandin E2 synthase-1 inhibitor) in an EAE model, including its immune-regulating potency in lipopolysaccharide-stimulated macrophages, and its neuroprotective effects in a macrophage-neuronal co-culture system. Crisdesalazine significantly alleviated clinical symptoms, inhibited inflammatory cell infiltration and demyelination in the spinal cord, and altered the phase of microglial/macrophage and regulatory T cells.

View Article and Find Full Text PDF

Background: Epilepsy has a genetic predisposition, yet causal factors and the dynamics of the immune environment in epilepsy are not fully understood.

Methods: We analyzed peripheral blood samples from epilepsy patients, identifying key genes associated with epilepsy risk through Mendelian randomization, using eQTLGen and genome-wide association studies. The peripheral immune environment's composition in epilepsy was explored using CIBERSORT.

View Article and Find Full Text PDF

The switch from oxidative phosphorylation to glycolysis is crucial for microglial activation. Recent studies highlight that histone lactylation promotes macrophage homeostatic gene expression via transcriptional regulation, but its role in microglia activation in Parkinson's disease (PD) remains unclear. Here, we demonstrated that inhibiting glycolysis with 2-deoxy-D-glucose alleviates microgliosis, neuroinflammation and dopaminergic neurons damage by reducing lactate accumulation in PD mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!