Background: Although growing evidence links beta-amyloid (Aβ) and neuronal hyperexcitability in preclinical mouse models of Alzheimer's disease (AD), a similar association in humans is yet to be established. The first aim of the study was to determine the association between elevated Aβ (Aβ+) and cognitive processes measured by the P3 event-related potential (ERP) in cognitively normal (CN) older adults. The second aim was to compare the event-related power between CNAβ+ and CNAβ-.

Methods: Seventeen CNAβ+ participants (age: 73 ± 5, 11 females, Montreal Cognitive Assessment [MoCA] score 26 ± 2) and 17 CNAβ- participants group-matched for age, sex, and MOCA completed a working memory task (n-back with n = 0, 1, 2) test while wearing a 256-channel electro-encephalography net. P3 peak amplitude and latency of the target, nontarget and task difference effect (nontarget-target), and event-related power in the delta, theta, alpha, and beta bands, extracted from Fz, Cz, and Pz, were compared between groups using linear mixed models. P3 amplitude of the task difference effect at Fz and event-related power in the delta band were considered main outcomes. Correlations of mean Aβ standard uptake value ratios (SUVR) using positron emission tomography with P3 amplitude and latency of the task difference effect were analyzed using Pearson Correlation Coefficient r.

Results: The P3 peak amplitude of the task difference effect at Fz was lower in the CNAβ+ group (P = 0.048). Similarly, power was lower in the delta band for nontargets at Fz in the CNAβ+ participants (P = 0.04). The CNAβ+ participants also demonstrated higher theta and alpha power in channels at Cz and Pz, but no changes in P3 ERP. Strong correlations were found between the mean Aβ SUVR and the latency of the 1-back (r =  - 0.69; P = 0.003) and 2-back (r =  - 0.69; P = 0.004) of the task difference effect at channel Fz in the CNAβ+ group.

Conclusions: Our data suggest that the elevated amyloid in cognitively normal older adults is associated with neuronal hyperexcitability. The decreased P3 task difference likely reflects early impairments in working memory processes. Further research is warranted to determine the validity of ERP in predicting clinical, neurobiological, and functional manifestations of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827181PMC
http://dx.doi.org/10.1186/s40035-022-00282-5DOI Listing

Publication Analysis

Top Keywords

task difference
24
older adults
12
event-related power
12
neuronal hyperexcitability
8
cognitively normal
8
normal older
8
working memory
8
peak amplitude
8
amplitude latency
8
power delta
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!