The emergence of multi-drug resistant bacteria and limitations on cancer treatment represent two important challenges in modern medicine. Biological compounds have been explored with a particular focus on venoms. Although they can be lethal or cause considerable damage to humans, venom is also a source rich in components with high therapeutic potential. Viperidae family is one of the most emblematic venomous snake families and several studies highlighted the antibacterial and antitumor potential of viper toxins. According to the literature, these activities are mainly associated to five protein families - svLAAO, Disintegrins, PLA2, SVMPs and C-type lectins- that act through different mechanisms leading to the inhibition of the growth of bacteria, as well as, cytotoxic effects and inhibition of metastasis process. In this review, we provide an overview of the venom toxins produced by species belonging to the Viperidae family, exploring their roles during the envenoming and their pharmacological properties, in order to demonstrate its antibacterial and antitumor potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389450122666210811164517 | DOI Listing |
Int J Mol Sci
December 2024
Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania.
This study investigates the synthesis of ZnSnO@SiO@5-FU nanoparticles as an additive for bone fillers in dental maxillofacial reconstruction. ZnSnO nanoparticles were synthesized and coated with a SiO shell, followed by the incorporation of 5-Fluorouracil (5-FU), aimed at enhancing the therapeutic properties of classical fillers. Structural analysis using X-ray diffraction confirmed that ZnSnO was the single crystalline phase present, with its crystallinity preserved after both SiO coating and 5-FU incorporation.
View Article and Find Full Text PDFHum Cell
January 2025
Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
We previously examined the antitumor effects of short interfering RNA nanoparticles targeting mammalian target of rapamycin (mTOR) in an orthotopic pancreatic cancer mouse model. We herein report the inhibitory effects of the mTOR inhibitor rapamycin on tumor growth in a novel established mouse model of pancreatic cancer using human pancreatic cancer cell line-derived organoids. Gemcitabine, 5-fluorouracil, and gemcitabine plus nab-paclitaxel are clinically used to treat advanced pancreatic cancer.
View Article and Find Full Text PDFBiomed Rep
February 2025
Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan.
Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
The genus (Amaryllidaceae) currently contains 25 plant species naturally occurring in Europe and the Middle East region. These perennial bulbous plants possess well-known medicinal and ornamental qualities. Alkaloid diversity is their most distinctive phytochemical feature.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China.
Cinnamon oil, an essential oil extracted from plants of the genus Cinnamomum, has been highly valued in ancient Chinese texts for its medicinal properties. This review summarizes the chemical composition, pharmacological actions, and various applications of cinnamon oil, highlighting its potential in medical and industrial fields. By systematically searching and evaluating studies from major scientific databases including Web of Science, PubMed, and ScienceDirect, we provide a comprehensive analysis of the therapeutic potential of cinnamon oil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!