AI Article Synopsis

Article Abstract

Electronic nematicity, in which rotational symmetry is spontaneously broken by electronic degrees of freedom, has been demonstrated as a ubiquitous phenomenon in correlated quantum fluids including high-temperature superconductors and quantum Hall systems. Notably, the electronic nematicity in high-temperature superconductors exhibits an intriguing entanglement with superconductivity, generating complicated superconducting pairing and intertwined electronic orders. Recently, an unusual competition between superconductivity and a charge-density-wave (CDW) order has been found in the AVSb (A = K, Rb, Cs) family with two-dimensional vanadium kagome nets. Whether these phenomena involve electronic nematicity is still unknown. Here we report evidence for the existence of electronic nematicity in CsVSb, using a combination of elastoresistance measurements, nuclear magnetic resonance (NMR) and scanning tunnelling microscopy/spectroscopy (STM/S). The temperature-dependent elastoresistance coefficient (m minus m) and NMR spectra demonstrate that, besides a C structural distortion of the 2a × 2a supercell owing to out-of-plane modulation, considerable nematic fluctuations emerge immediately below the CDW transition (approximately 94 kelvin) and finally a nematic transition occurs below about 35 kelvin. The STM experiment directly visualizes the C-structure-pinned long-range nematic order below the nematic transition temperature, suggesting a novel nematicity described by a three-state Potts model. Our findings indicate an intrinsic electronic nematicity in the normal state of CsVSb, which sets a new paradigm for revealing the role of electronic nematicity on pairing mechanism in unconventional superconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-022-04493-8DOI Listing

Publication Analysis

Top Keywords

electronic nematicity
28
nematicity
8
electronic
8
high-temperature superconductors
8
nematic transition
8
charge-density-wave-driven electronic
4
nematicity kagome
4
kagome superconductor
4
superconductor electronic
4
nematicity rotational
4

Similar Publications

The development of fibrous actuators with diverse actuation modes is expected to accelerate progress in active textiles, robotics, wearable electronics, and haptics. Despite the advances in responsive polymer-based actuating fibers, the available actuation modes are limited by the exclusive reliance of current technologies on thermotropic contraction along the fiber axis. To address this gap, the present study describes a reversible and spontaneous thermotropic elongation (~30%) in liquid crystal elastomer fibers produced via ultraviolet-assisted melt spinning.

View Article and Find Full Text PDF

Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.

View Article and Find Full Text PDF

Chiral nematic cellulose nanocrystal films: Sucrose modulation for structural color and dynamic behavior.

Int J Biol Macromol

January 2025

Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada. Electronic address:

This study explores the effect of sucrose addition on the properties of chiral nematic cellulose nanocrystal (CNC) films for potential food industry applications, including biodegradable packaging and food coloring. The addition of sucrose altered the films' structural color, shifting from blue in pure CNC films to aqua blue, green, yellow-green, and red with increasing sucrose concentrations (up to 21 %). Surface analysis revealed a reduction in contact angle from 96° to 48° due to sucrose's hydrophilic nature and smoother film surfaces.

View Article and Find Full Text PDF

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

Micro-corrugated chiral nematic cellulose nanocrystal films integrated with ionic conductive hydrogels leads to flexible materials for multidirectional strain sensing applications.

Int J Biol Macromol

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:

Multidirectional strain sensors are of technological importance for wearable devices and soft robots. Here, we report that flexible materials capable of multidirectional anisotropic strain sensing can be constructed leveraging diffusion-induced infiltration of monomers and in situ polymerization of metal ion-containing double network hydrogels in and on the surface of micro-corrugated chiral nematic cellulose nanocrystal/glucose films. Integrating the micro-corrugated cellulose nanocrystal/glucose chiral nematic films with ionic conductive hydrogels of PAA-co-AAm/sodium alginate/Al endows the materials with multidirectional mechanoelectrical resistivity and mechanochromism anisotropy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!