Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing accurate and real-time algorithms for a non-invasive three-dimensional representation and reconstruction of internal patient structures is one of the main research fields in computer-assisted surgery and endoscopy. Mono and stereo endoscopic images of soft tissues are converted into a three-dimensional representation by the estimation of depth maps. However, automatic, detailed, accurate and robust depth map estimation is a challenging problem that, in the stereo setting, is strictly dependent on a robust estimate of the disparity map. Many traditional algorithms are often inefficient or not accurate. In this work, novel self-supervised stacked and Siamese encoder/decoder neural networks are proposed to compute accurate disparity maps for 3D laparoscopy depth estimation. These networks run in real-time on standard GPU-equipped desktop computers and the outputs may be used for depth map estimation using the a known camera calibration. We compare performance on three different public datasets and on a new challenging simulated dataset and our solutions outperform state-of-the-art mono and stereo depth estimation methods. Extensive robustness and sensitivity analyses on more than 30000 frames has been performed. This work leads to important improvements in mono and stereo real-time depth map estimation of soft tissues and organs with a very low average mean absolute disparity reconstruction error with respect to ground truth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2022.102380 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!