The Universal HPTLC Mixture (UHM) consists of eight substances (guanosine, sulisobenzone, thymidine, paracetamol, phthalimide, 9-hydroxyfluorene, thioxanthen-9-one, and 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol) and yields separated zones over the whole R range for a multitude of developing solvents. Therefore, it could be used in a generic system suitability test (SST) as well as for the verification of quality of HPTLC data. In this work, changes caused by ±10% variation of the volume fractions of the developing solvent components were tested on three developing solvents, to investigate the R shifts of the UHM zones in comparison to established SSTs and results described for test samples in selected pharmacopeia monographs for identification of herbal drugs. Additionally, one of the developing solvents was investigated with different stationary phases. The components of the UHM showed similar prediction intervals as the substances of established SSTs and specific markers. The UHM could, therefore, be considered for use in an alternative SST. Because it covers the whole R range, the UHM can detect changes in developing solvent gradients or saturation effects, whereas many established SSTs generally describe only a limited R range. The use of the UHM can help facilitate automation of HPTLC. Furthermore, it can potentially be used for correlating R shifts across HPTLC plates. The circumstances, under which this is possible, are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2022.462863 | DOI Listing |
Chem Sci
January 2025
State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
In overcoming the barrier of rapid Li transfer in lithium-ion batteries at extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tuning the solvation structure and designing a kinetically stable electrode-electrolyte interface to achieve high-rate charging and discharging remain a challenge. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize stability and the robust solid electrolyte interface film (SEI), realizing a rapid Li transfer process and the structural integrity of electrode materials.
View Article and Find Full Text PDFInd Eng Chem Res
January 2025
Department of Chemistry, Physics, and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States.
An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Manipal University Jaipur VPO-Dehmi-Kalan, Off Jaipur Ajmer Express Way Jaipur Rajasthan 303007 India
Triazole, a nitrogen-containing five-membered heterocycle with two isomeric forms, 1,2,3-triazole and 1,2,4-triazole, has proven to be a valuable component in the pharmaceutical domain. Owing to its widespread utility in drug development, pharmaceutical and medicinal chemistry, several synthetic methods have been explored, such as different catalytic systems, solvents, and heating methodologies in recent years. However, some methods were associated with several limitations, such as harsh reaction conditions, high temperatures, low atom economy, and long reaction times.
View Article and Find Full Text PDFRSC Adv
January 2025
Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil
Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
The development of stable, high-performance electrolytes is essential to addressing the safety concerns and limited lifespan caused by the thermal and chemical instability of traditional organic carbonate-based electrolytes in lithium-ion batteries (LIBs). This study examined the potential of mixed solvent systems, specifically ethyl methyl carbonate (EMC) and tetramethylene sulfone (TMS), to modify ion solvation and improve ionic conductivity in LIB electrolytes. Through molecular dynamics simulations, we investigated the solvation structure and transport properties of lithium ions (Li) in these solvent environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!