Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, siamese-based trackers have achieved significant successes. However, those trackers are restricted by the difficulty of learning consistent feature representation with the object. To address the above challenge, this paper proposes a novel siamese implicit region proposal network with compound attention for visual tracking. First, an implicit region proposal (IRP) module is designed by combining a novel pixel-wise correlation method. This module can aggregate feature information of different regions that are similar to the pre-defined anchor boxes in Region Proposal Network. To this end, the adaptive feature receptive fields then can be obtained by linear fusion of features from different regions. Second, a compound attention module including a channel and non-local attention is raised to assist the IRP module to perform a better perception of the scale and shape of the object. The channel attention is applied for mining the discriminative information of the object to handle the background clutters of the template, while non-local attention is trained to aggregate the contextual information to learn the semantic range of the object. Finally, experimental results demonstrate that the proposed tracker achieves state-of-the-art performance on six challenging benchmark tests, including VOT-2018, VOT-2019, OTB-100, GOT-10k, LaSOT, and TrackingNet. Further, our obtained results demonstrate that the proposed approach can be run at an average speed of 72 FPS in real time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2022.3148876 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!