Background: Prostate cancer is a malignant disease that severely affects the health and comfort of the male population. The long non-coding RNA TP73-AS1 has been shown to be involved in the malignant transformation of various human cancers. However, whether TP73-AS1 contributes to prostate cancer progression has not been reported yet. Accordingly, here we aimed to report the role of TP73-AS1 in the development and progression of prostate cancer and determine its relationship with TP73.
Methods And Results: TP73-AS1-specific siRNA oligo duplexes were used to silence TP73-AS1 in DU-145 and PC-3 cells. Results indicated that TP73-AS1 was upregulated whereas TP73 was downregulated in prostate cancer cells compared to normal prostate cells and there was a negative correlation between them. Besides, loss of function experiments of TP73-AS1 in prostate cancer cells strongly induced cellular apoptosis, interfered with the cell cycle progression, and modulated related pro- and anti-apoptotic gene expression. Colony formation and migration capacities of TP73-AS1-silenced prostate cancer cells were also found to be dramatically reduced.
Conclusions: Our findings provide novel evidence that suggests a chief regulatory role for the TP73-TP73-AS1 axis in prostate cancer development and progression, suggesting that the TP73/TP73-AS1 axis can be a promising diagnostic and therapeutic target for prostate cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-022-07141-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!