Background: Oxidative stress is among the most common risk factors in the pathogenesis of acute myocardial infarction (AMI). Glutathione peroxidase 1 enzyme coded by the GPX1 gene plays an essential role in reducing oxidative stress. Previous studies correlated the GPX1 (Pro200Leu) single nucleotide polymorphism (SNP) with AMI incidence. Elevated homocysteine (Hcy) levels induce oxidative stress and are considered an independent risk factor for AMI. Evidence showed a complex relationship between Hcy and GPx-1 activity. This study examined the association of the common (Pro200Leu) SNP in GPX1 with AMI incidence in an Egyptian population. This study is the first to check this association in an Egyptian population. Moreover, the association between serum Hcy and the incidence of AMI was checked, and the novelty was to statistically correlate GPX1 Pro200Leu genotypes with serum Hcy levels in patients and control subjects. Hundred control subjects and hundred and twenty AMI patients were genotyped using PCR-RFLP analysis. An ELISA was used to measure serum Hcy levels.
Results: The GPX1 (Pro200Leu) genotype distribution and allele frequency were not significantly different between patients and control subjects (P = 0.60 and P = 0.62, respectively). Serum levels of Hcy were significantly elevated in patients compared to control subjects (P ≤ 0.0001). However, no significant difference was observed in serum Hcy levels among different GPX1 genotypes in neither patients nor control subjects.
Conclusions: The minor T allele of GPX1 Pro200Leu is not associated with AMI risk in this Egyptian population. However, high homocysteine serum levels might contribute independently to the risk of AMI. Finally, Hcy levels were not significantly different in homozygous minor TT compared to homozygous wild CC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828810 | PMC |
http://dx.doi.org/10.1186/s43141-022-00307-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!