Modelling the cathodic reduction of 2,4-dichlorophenol in a microbial fuel cell.

Bioprocess Biosyst Eng

Chemical Engineering Department, Institute for Chemical and Environmental Technology ITQUIMA, University of Castilla-La Mancha, Avenida Camilo José Cela S/N 13071, Ciudad Real, Spain.

Published: April 2022

This work presents a simplified mathematical model able to predict the performance of a microbial fuel cell (MFC) for the cathodic dechlorination of 2,4-dichlorophenol (2,4-DCP) operating at different cathode pH values (7.0 and 5.0). Experimental data from previous work were utilized for the fitting of the model. The MFC modelled consisted of two chambers (bioanode and abiotic cathode), wherein the catholyte contained 300 mg L of 2,4-DCP and the anolyte 1000 mg L of sodium acetate. The model considered two mixed microbial populations in the anode compartment using sodium acetate as the carbon source for growth and maintenance: electrogenic and non-electrogenic biomass. 2,4-DCP, its intermediates of the reductive process (2-chlorophenol, 2-CP and 4-chlorophenol, 4-CP) and protons were considered in the model as electron acceptors in the electrogenic mechanism. The global process rate was assumed to be controlled by the biological mechanisms and modelled using multiplicative Monod-type equations. The formulation of a set of differential equations allowed to describe the simultaneous evolution of every component: concentration of sodium acetate in the anodic compartment; and concentration of 2,4-DCP, 2-CP, 4-CP, phenol and chloride in the cathode chamber. Current production and coulombic efficiencies were also estimated from the fitting. It was observed that most of the organic substrate was used by non-electrogenic mechanism. The influence of the Monod parameters was more important than the influence of the biomass yield coefficients. Finally, the model was employed to simulate different scenarios under distinct experimental conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948123PMC
http://dx.doi.org/10.1007/s00449-022-02699-8DOI Listing

Publication Analysis

Top Keywords

sodium acetate
12
microbial fuel
8
fuel cell
8
model
5
modelling cathodic
4
cathodic reduction
4
reduction 24-dichlorophenol
4
24-dichlorophenol microbial
4
cell work
4
work presents
4

Similar Publications

The current research focused on extraction optimization of bioactive compounds from Strychnos potatorum seeds (SPs) using an eco-friendly glycerol-sodium acetate based deep eutectic solvent (DES). The optimization was accomplished using response surface methodology (RSM) and artificial neural networking (ANN). The independent variables included shaking time (A), temperature (B), and solvent-to-feed ratio (C), and the responses were the extraction yield, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (DPPH), and antidiabetic activity (α-amylase inhibitory activity).

View Article and Find Full Text PDF

Fabrication of emulsion microparticles to improve the physicochemical stability of vitamin A acetate.

Food Chem

December 2024

Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China. Electronic address:

Vitamin A is an essential micronutrient crucial for human health, but it is susceptible to degradation when exposed to light, oxygen, and heat, reducing its effectiveness in food production. This study aims to develop vitamin A acetate (VA) emulsion microparticles under an acidic condition using electrostatic complexation and the viscosifying effect to enhance VA physicochemical stability. The stability, encapsulation efficiency (EE), microstructure, and rheological properties of VA emulsion microparticles at different sodium alginate concentrations were investigated.

View Article and Find Full Text PDF

Flecainide acetate is a Class 1c anti-arrhythmic with a potent sodium voltage gated channel blockade which is utilized for the second-line treatment of tachyarrhythmias in children and adults. Given its narrow therapeutic index, the individualization of drug therapy is of utmost importance for clinicians. Despite efforts to improve anti-arrhythmic drug therapy, there remain knowledge gaps regarding the impact of variation in the genes relevant to flecainide's disposition and response.

View Article and Find Full Text PDF

Resource utilization of waste solar photovoltaic panels for preparation of microporous silicon nanoparticles.

Waste Manag

December 2024

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.

With the exponential growth of global photovoltaic (PV) installed capacity, the quantity of discarded PV modules continues to rise. This study innovatively explored the sustainable recovery and utilization of raw materials from discarded solar panels, focusing on the transformation of recycled silicon into microporous silica nanoparticles (MSN). Low toxic organic solvent ethyl acetate (EA) was for the first time utilized to reduce the viscosity of ethylene-vinyl acetate (EVA) and facilitated its removal.

View Article and Find Full Text PDF

Unfolding and refolding of GH19 chitinase Chi19MK with antifungal activity from Lysobacter sp. MK9-1 at low pH and high temperature.

J Biosci Bioeng

December 2024

Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan. Electronic address:

The GH19 chitinase Chi19MK from Lysobacter sp. MK9-1 inhibits fungal growth. In this study, the thermal stability of Chi19MK was investigated in buffers of different pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!