Bacteria are usually iron-deficient because the Fe3+ in their environment is insoluble or is incorporated into proteins. To overcome their natural iron limitation, bacteria have developed sophisticated iron transport and regulation systems. In gram-negative bacteria, these include iron carriers, such as citrate, siderophores, and heme, which when loaded with Fe3+ adsorb with high specificity and affinity to outer membrane proteins. Binding of the iron carriers to the cell surface elicits a signal that initiates transcription of iron carrier transport and synthesis genes, referred to as "cell surface signaling". Transcriptional regulation is not coupled to transport. Outer membrane proteins with signaling functions contain an additional N-terminal domain that in the periplasm makes contact with an anti-sigma factor regulatory protein that extends from the outer membrane into the cytoplasm. Binding of the iron carriers to the outer membrane receptors elicits proteolysis of the anti-sigma factor by two different proteases, Prc in the periplasm, and RseP in the cytoplasmic membrane, inactivates the anti-sigma function or results in the generation of an N-terminal peptide of ∼50 residues with pro-sigma activity yielding an active extracytoplasmic function (ECF) sigma factor. Signal recognition and signal transmission into the cytoplasm is discussed herein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249621 | PMC |
http://dx.doi.org/10.1093/femsre/fuac010 | DOI Listing |
Vertebrate vision in dim-light environments is initiated by rod photoreceptor cells that express the photopigment rhodopsin, a G-protein coupled receptor (GPCR). To ensure efficient light capture, rhodopsin is densely packed into hundreds of membrane discs that are tightly stacked within the rod-shaped outer segment compartment. Along with its role in eliciting the visual response, rhodopsin serves as both a building block necessary for proper outer segment formation as well as a trafficking guide for a few outer segment resident membrane proteins.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
Bacterial outer membrane vesicles (OMVs) have emerged as promising vehicles for anticancer drug delivery due to their inherent tumor tropism, immune-stimulatory properties, and potential for functionalization with therapeutic proteins. Despite their advantages, the high lipopolysaccharide (LPS) endotoxin content in the OMVs raises significant safety and regulatory challenges. In this work, we produce LPS-attenuated and LPS-free OMVs and systematically assess the effects of LPS modification on OMVs' physicochemical characteristics, membrane protein content, immune-stimulatory capacity, tolerability, and anticancer efficacy.
View Article and Find Full Text PDFActa Trop
January 2025
Professor, Department of Paediatrics, All India Institute of Medical Sciences [AIIMS], Bhubaneswar, Odisha.751019. Electronic address:
Spotted fever group Rickettsia (SFGR) infections remain largely under-investigated as causative agents of acute undifferentiated febrile illness (AUFI) in resource-limited settings. Few studies are available on the prevalence of SFGR infections in India, especially in eastern India. In a cross-sectional study conducted in 192 hospitalized adult and paediatric patients with AUFI, the frequency of SFGR using sequential PCR targeting genes encoding citrate synthase gene (gltA), 17 kDa lipoprotein precursor antigen (17kDa), outer membrane proteins A and B (omp A & omp B) was 6.
View Article and Find Full Text PDFJ Trop Med
December 2024
Department of Microbiology, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran.
The protein is highly conserved among pathogenic serovars and it is expressed during both acute and chronic infections. The aim of this study was to clone and sequence of the protein-encoding gene of serovars. In this study, 23 pathogenic serovars and two nonpathogenic serovars were used.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Institute of Infectious Disease and Infection Control, Jena University Hospital, Jena, 07747, Germany.
In our prior research, polymer nanoparticles (NPs) containing tobramycin displayed robust antibacterial efficacy against biofilm-embedded () and (. ) cells, critical pathogens in cystic fibrosis. In the current study, we investigated the deposition of a nanoparticulate carrier composed of poly(d,l-lactic--glycolic acid) (PLGA) and poly(ethylene glycol)--PLGA (PEG-PLGA) that was either covalently bonded with cyanine-5-amine (Cy5) or noncovalently bound with freely embedded cationic rhodamine B (RhB), which served as a drug surrogate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!