The development of a stepwise synthetic strategy for Au ring-in-a-triangle nanoframes with a high degree of structural solidity is essential to the advancement of highly amplified near-field focusing. This strategy leads to the formation of an inscribed nanoring in a triangular metal frame with stability to withstand elevated temperatures and an oxidizing environment, which is critical for successful single-particle surface-enhanced Raman scattering (SERS). The existence of inscribed nanorings plays an important role in enhancing the so-called "lightning rod effect," whereby the electromagnetic near-field enhancement occurs on the highly curved curvature of a metallic interface. We evaluated the corresponding single-particle SERS as a function of the thickness of the rims and then constructed two-dimensional (2D) bulk SERS substrates, wherein an ensemble of hotspots exists. The synergic contribution from both inter- and intrahotspots allowed the outstanding linearity of the calibration curve and the lowest limit of detection, ∼10 M for the analyte concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c04926DOI Listing

Publication Analysis

Top Keywords

ring-in-a-triangle nanoframes
8
highly amplified
8
amplified near-field
8
near-field focusing
8
nanoframes integrating
4
integrating intra-
4
intra- interhotspots
4
interhotspots highly
4
focusing development
4
development stepwise
4

Similar Publications

The development of a stepwise synthetic strategy for Au ring-in-a-triangle nanoframes with a high degree of structural solidity is essential to the advancement of highly amplified near-field focusing. This strategy leads to the formation of an inscribed nanoring in a triangular metal frame with stability to withstand elevated temperatures and an oxidizing environment, which is critical for successful single-particle surface-enhanced Raman scattering (SERS). The existence of inscribed nanorings plays an important role in enhancing the so-called "lightning rod effect," whereby the electromagnetic near-field enhancement occurs on the highly curved curvature of a metallic interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!