Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Macroporous hydrogels are an attractive platform for implantable sensors because the network of interconnected macropores facilitates tissue integration. Embedded sensing elements, in our case, plasmonic gold nanoparticles, can transduce the presence, absence, and concentration of biochemical markers to the outside. We present here how to integrate such nanosensors into a macroporous hydrogel while preserving the nanosensor functionality in order to produce implantable sensors. We demonstrate that out of four different polymers, the poly(2-hydroxyethyl methacrylate-poly(ethylene glycole)diacrylate copolymer (pHEMA-PEGDA) results in a working sensor. Our approach of incorporating nanosized sensor elements into a hydrogel matrix generally identifies suitable polymers for implantable sensor systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.1c01290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!