Biotic and abiotic mechanical stimuli are ubiquitous in the environment, and are a widely used source of sensory information in arthropods. Spiders sense mechanical stimuli using hundreds of slit sense organs (small isolated slits, large isolated slits, groups of slits and lyriform organs) distributed across their bodies and appendages. These slit sense organs are embedded in the exoskeleton and detect cuticular strain. Therefore, the spatial pattern of these sensors can give clues into how mechanical stimuli from different sources might be processed and filtered as they are transmitted through the body. Here, we map the distribution of slit sense organs on the legs in two species of orb-weaving spider, A. diadematus and T. edulis, in which slit sense organ distribution has not previously been investigated. We image the spiders' legs using scanning electron microscopy, and trace the position and orientation of slits on these images to describe the distribution and external morphology of the slit sense organs. We show that both species have a similar distribution of slit sense organs, with small isolated slits occurring in consistent lines parallel to the long axis of the legs, whilst large isolated slits, groups of slits and lyriform organs appear in fixed positions near the leg joints. Our findings support what has been described in the literature for several other species of spider, which indicates that slit organ arrangement is conserved across spiders in different evolutionary lineages and with disparate hunting strategies. The dispersed distribution of small isolated slits along the whole length of the leg may be used to detect large-scale strain of the leg segment as a result of muscle activity or internal changes in haemolymph pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.asd.2022.101140 | DOI Listing |
Anal Chem
January 2025
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-41061, United States.
Glow discharge optical emission spectrometry (GDOES) allows fast and simultaneous multielemental analysis directly from solids and depth profiling down to the nanometer scale, which is critical for thin-film (TF) characterization. Nevertheless, operating conditions for the best limits of detection (LODs) are compromised in lieu of the best sputtering crater shapes for depth resolution. In addition, the fast transient signals from ultra-TFs do not permit the optimal sampling statistics of bulk analysis such that LODs are further compromised.
View Article and Find Full Text PDFQuantum backflow (QB), a counterintuitive interference phenomenon where particles with positive momentum can propagate backward, is important in applications involving light-matter interactions. To date, experimental demonstrations of backflow have been restricted to classical optical systems using techniques such as slit scanning or Shack-Hartmann wavefront sensing, which suffer from low spatial resolution due to the inherent limitations in slit width and lenslet array density. Here, we report an observation of azimuthal backflow (AB) both theoretically and experimentally by employing the weak measurement technique, which enables the precise extraction of photon momentum at each pixel.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.
A linear spot-type multipass cell-enhanced fiber-optic photoacoustic gas microprobe is proposed. To further reduce the volume of the gas chamber and enhance the photoacoustic signal, we designed the cross section of the photoacoustic tube as a slit with a height of 10 mm and a width of 1.5 mm.
View Article and Find Full Text PDFClin Ophthalmol
November 2024
Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
Purpose: Corneal cystine accumulation results in photophobia and affects patients' quality of life. We assessed the efficacy and safety of cysteamine 0.55% solution in Japanese cystinosis patients with corneal cystine crystals for 52 weeks.
View Article and Find Full Text PDFThe geostationary orbit imaging spectrometer offers distinct advantages for diverse applications in remote sensing. To enhance swath and data richness, there is a growing trend toward spectrometers with broader fields of view (FOV) and extended slit lengths. Optical systems equipped with these features face significant challenges in aberration correction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!