Bugs as drugs: neglected but a promising future therapeutic strategy in cancer.

Future Oncol

Department of Genetics, Laboratory of Cellular & Molecular Genetics, Ecology & Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP, 31270-901, Brazil.

Published: April 2022

Effective cancer treatment is an urgent need due to the rising incidence of cancer. One of the most promising future strategies in cancer treatment is using microorganisms as cancer indicators, prophylactic agents, immune activators, vaccines or vectors in antitumor therapy. The success of bacteria-mediated chemotherapy will be dependent on the balance of therapeutic benefit and the control of bacterial infection in the body. Additionally, protozoans and viruses have the potential to be used in cancer therapy. This review summarizes how these microorganisms interact with tumor microenvironments and the challenges of a 'bugs as drugs' approach in cancer therapy. Several standpoints are discussed, such as bacteria as vectors for gene therapy that shuttle therapeutic compounds into tumor tissues, their intrinsic antitumor activities and their combination with chemotherapy or radiotherapy. Bug-based cancer therapy is a two-edged sword and we need to find the opportunities by overcoming the challenges.

Download full-text PDF

Source
http://dx.doi.org/10.2217/fon-2021-1137DOI Listing

Publication Analysis

Top Keywords

cancer therapy
12
promising future
8
cancer
8
cancer treatment
8
therapy
5
bugs drugs
4
drugs neglected
4
neglected promising
4
future therapeutic
4
therapeutic strategy
4

Similar Publications

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Background: De-intensification of anti-cancer therapy without significantly affecting outcomes is an important goal. Omission of axillary surgery or breast radiation is considered a reasonable option in elderly patients with early-stage breast cancer and good prognostic factors. Data on avoidance of both axillary surgery and radiation therapy (RT) is scarce and inconclusive.

View Article and Find Full Text PDF

Efficacy and cost-effectiveness of an ACT and compassion-based intervention for women with breast cancer: study protocol of two randomised controlled trials {1}.

Trials

January 2025

Center for Research in Neuropsychology and Cognitive and Behavioral Intervention, Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal.

Background: Breast cancer is the most diagnosed cancer in women worldwide and carries a considerable psychosocial burden. Interventions based on Acceptance and Commitment Therapy (ACT) and compassion-based approaches show promise in improving adjustment and quality of life in people with cancer. The Mind programme is an integrative ACT and compassion-based intervention tailored for women with breast cancer, which aims to prepare women for survivorship by promoting psychological flexibility and self-compassion.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.

Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.

View Article and Find Full Text PDF

New treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!