Adult form and function are dependent upon the activity of specialized signaling centers that act early in development at the embryonic midline. These centers instruct the surrounding cells to adopt a positional fate and to form the patterned structures of the phylotypic embryo. Abnormalities in these processes have devastating consequences for the individual, as exemplified by holoprosencephaly in which anterior midline development fails, leading to structural defects of the brain and/or face. In the 25 years since the first association between human holoprosencephaly and the sonic hedgehog gene, a combination of human and animal genetic studies have enhanced our understanding of the genetic and embryonic causation of this congenital defect. Comparative biology has extended the holoprosencephaly network via the inclusion of gene mutations from multiple signaling pathways known to be required for anterior midline formation. It has also clarified aspects of holoprosencephaly causation, showing that it arises when a deleterious variant is present within a permissive genome, and that environmental factors, as well as embryonic stochasticity, influence the phenotypic outcome of the variant. More than two decades of research can now be distilled into a framework of embryonic and genetic causation. This framework means we are poised to move beyond our current understanding of variants in signaling pathway molecules. The challenges now at the forefront of holoprosencephaly research include deciphering how the mutation of genes involved in basic cell processes can also cause holoprosencephaly, determining the important constituents of the holoprosencephaly permissive genome, and identifying environmental compounds that promote holoprosencephaly. This article is categorized under: Congenital Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology Congenital Diseases > Environmental Factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wsbm.1552 | DOI Listing |
Eur J Pediatr
January 2025
Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy.
Unlabelled: Klinefelter syndrome (KS) is the most common sex chromosomal aneuploidy in males (47,XXY karyotype in 80-90% of cases), primarily characterized by hypergonadotropic hypogonadism and infertility. It encompasses a broad phenotypic spectrum, leading to variability in neurocognitive and psychosocial outcomes among affected individuals. Despite the recognized correlation between KS and various neuropsychiatric conditions, studies investigating potential sleep disorders, particularly in pediatric subjects, are lacking.
View Article and Find Full Text PDFPediatr Surg Int
January 2025
Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa, Nagoya, Aichi, 466-8550, Japan.
Purpose: To analyze the frequency and predictive factors of the development of postoperative pectus excavatum and scoliosis in children who underwent surgery for cystic lung disease.
Methods: This study examined patients who underwent surgery for cystic lung disease (open and thoracoscopic) between July 2000 and December 2018 with a > 3-year follow-up period. Lesion size, surgical outcomes, and subsequent musculoskeletal complications were compared between the open surgery and thoracoscopic surgery groups.
Childs Nerv Syst
January 2025
Department of Global Health, Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada.
Background: A giant encephalocele associated with Chiari malformation is a rare congenital anomaly from a cephalad neural tube defect. Early prenatal diagnosis and parental counseling are essential; as early surgical intervention can improve outcomes.
Methods: Between 2010 and 2023, twenty-seven newborns out of 43,815 delivered at our institution were diagnosed with encephaloceles, including seven cases of giant encephalocele associated with Chiari malformation type III.
BMJ Open Respir Res
December 2024
Department of Design Sciences, Lund University, Lund, Sweden
Rationale: Preterm infants diagnosed with bronchopulmonary dysplasia (BPD) are thought to have fewer and larger alveoli than their term peers, but it is unclear to what degree this persists later in life.
Objectives: To investigate to what degree the distal airspaces are enlarged in adolescents born preterm and to evaluate the new Airspace Dimension Assessment (AiDA) method in investigating this group.
Methods: We investigated 41 adolescents between 15 and 17 years of age, of whom 25 were born very preterm (a gestational age <31 weeks, with a mean of 26 weeks) and 16 were term-born controls.
BMJ Open Ophthalmol
December 2024
Ophthalmology, Royal Hospital for Children, Glasgow, UK.
Background: Very premature infants screened for retinopathy of prematurity (ROP) that do not develop ROP still experience serious visual developmental challenges, and while it is recommended that all children in the UK are offered preschool visual screening, we aimed to explore whether this vulnerable group requires dedicated follow-up.
Methods: We performed a real-world retrospective observational cohort study of children previously screened for ROP in NHS Greater Glasgow and Clyde (Scotland) between 2013 and 2015. We excluded those with any severity of ROP identified during screening.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!