Background: The COVID-19 pandemic poses serious threats to public health globally, and the emerging mutations in SARS-CoV-2 genomes has become one of the major challenges of disease control. In the second epidemic wave in Nigeria, the roles of co-circulating SARS-CoV-2 Alpha (ie, B.1.1.7) and Eta (ie, B.1.525) variants in contributing to the epidemiological outcomes were of public health concerns for investigation.

Methods: We developed a mathematical model to capture the transmission dynamics of different types of strains in Nigeria. By fitting to the national-wide COVID-19 surveillance data, the transmission advantages of SARS-CoV-2 variants were estimated by likelihood-based inference framework.

Results: The reproduction numbers were estimated to decrease steadily from 1.5 to 0.8 in the second epidemic wave. In December 2020, when both Alpha and Eta variants were at low prevalent levels, their transmission advantages (against the wild type) were estimated at 1.51 (95% credible intervals (CrI) = 1.48, 1.54), and 1.56 (95% CrI = 1.54, 1.59), respectively. In January 2021, when the original variants almost vanished, we estimated a weak but significant transmission advantage of Eta against Alpha variants with 1.14 (95% CrI = 1.11, 1.16).

Conclusions: Our findings suggested evidence of the transmission advantages for both Alpha and Eta variants, of which Eta appeared slightly more infectious than Alpha. We highlighted the critical importance of COVID-19 control measures in mitigating the outbreak size and relaxing the burdens to health care systems in Nigeria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801210PMC
http://dx.doi.org/10.7189/jogh.11.05028DOI Listing

Publication Analysis

Top Keywords

alpha eta
12
eta variants
12
transmission advantages
12
transmission dynamics
8
sars-cov-2 alpha
8
public health
8
second epidemic
8
epidemic wave
8
variants
7
alpha
6

Similar Publications

Background Women's psychological well-being (PWB) is influenced by various factors, including their occupational status and social roles. In India, where traditional and modern roles often intersect, understanding the PWB of homemakers and employed women is crucial for developing targeted mental health interventions. This study aimed to compare the overall and domain-specific PWB between homemakers and employed women in the Perambalur district, Tamil Nadu, using the 18-item Ryff's PWB Scale (PWBS).

View Article and Find Full Text PDF

Immunogenicity of a multivalent protein subunit vaccine based on non-glycosylated RBD antigens of SARS-cov-2 and its variants.

Virology

December 2024

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, Mexico City, 07360, Mexico; CINVESTAV, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Mexico. Electronic address:

COVID-19 infections continue due to accessibility barriers to vaccines and the emergence of SARS-CoV-2 variants. An effective, safe, accessible, and broad-spectrum vaccine is still needed to control the disease. We developed a multivalent protein subunit vaccine comprising antigens designed from a non-N-glycosylated region of the receptor-binding domain of the spike protein of SARS-CoV-2.

View Article and Find Full Text PDF

Sodium valproate reverses aortic hypercontractility in acute myocardial infarction in rabbits.

Eur J Pharmacol

December 2024

Department of Physiology, School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain; Center for Biomedical Research Network on Cardiovascular Diseases (CIBER-CV), Madrid, Spain. Electronic address:

Sympathetic nervous system (SNS), endothelin 1 (ET-1) and angiotensin II (Ang II) are involved in the pathophysiology of acute myocardial infarction (AMI). Valproic acid (VPA) is under study for the treatment against AMI due to its beneficial cardiac effects. However, the vascular effects of VPA on the activation of the SNS, ET-1 and Ang II after AMI are not fully studied.

View Article and Find Full Text PDF

Agonists enhance receptor activity by providing net-favorable binding energy to active over resting conformations, with efficiency (η) linking binding energy to gating. Previously, we showed that in nicotinic receptors, η-values are grouped into five structural pairs, correlating efficacy and affinity within each class, uniting binding with allosteric activation (Indurthi and Auerbach, 2023). Here, we use molecular dynamics (MD) simulations to investigate the low-to-high affinity transition (L→H) at the Torpedo α-δ nicotinic acetylcholine receptor neurotransmitter site.

View Article and Find Full Text PDF

Experimental Study on the Size Effect of Compression-Shear Fracture Characteristics of Rock-like Materials Containing Open Cracks.

Materials (Basel)

December 2024

Engineering Research Center of Diagnosis Technology and Instruments of Hydro-Construction, Chongqing Jiaotong University, Chongqing 400074, China.

Understanding fracture mechanics in rock-like materials under compression-shear condition is critical for predicting failure mechanisms in various engineering applications, such as mining and civil infrastructure. This study conducted uniaxial compression tests on cubic gypsum specimens of varying sizes (side lengths of 75 mm, 100 mm, 125 mm, and 150 mm) and crack inclination angles (ranging from 0° to 90°) to assess the size effect on fracture behavior. The effects of specimen size and crack inclination on fracture characteristics, including strength, failure mode, and crack initiation angle, were analyzed based on the maximum tangential stress (MTS) criterion and the generalized maximum tangential stress (GMTS) criterion, with relative critical size (α) and relative openness ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!