The global COVID-19 pandemic has imposed restrictions on people's movement, work and access to places at multiple international, national and sub-national scales. We need a better understanding of how the varied restrictions have impacted wildlife monitoring as gaps in data continuity caused by these disruptions may limit future data use and analysis. To assess the effect of different levels of COVID-19 restrictions on both citizen science and traditional wildlife monitoring, we analyse observational records of a widespread and iconic monotreme, the Australian short-beaked echidna (), in three states of Australia. We compare citizen science to observations from biodiversity data repositories across the three states by analysing numbers of observations, coverage in protected areas, and geographic distribution using an index of remoteness and accessibility. We analyse the effect of restriction levels by comparing these data from each restriction level in 2020 with corresponding periods in 2018-2019. Our results indicate that stricter and longer restrictions reduced numbers of scientific observations while citizen science showed few effects, though there is much variation due to differences in restriction levels in each state. Geographic distribution and coverage of protected and non-protected areas were also reduced for scientific monitoring while citizen science observations were little affected. This study shows that citizen science can continue to record accurate and widely distributed species observational data, despite pandemic restrictions, and thus demonstrates the potential value of citizen science to other researchers who require reliable data during periods of disruption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814614PMC
http://dx.doi.org/10.1016/j.biocon.2022.109470DOI Listing

Publication Analysis

Top Keywords

citizen science
24
wildlife monitoring
12
three states
8
science observations
8
coverage protected
8
geographic distribution
8
restriction levels
8
data
6
citizen
6
science
6

Similar Publications

Nanoplastics are suspected to pollute every environment on Earth, including very remote areas reached via atmospheric transport. We approached the challenge of measuring environmental nanoplastics by combining high-sensitivity TD-PTR-MS (thermal desorption-proton transfer reaction-mass spectrometry) with trained mountaineers sampling high-altitude glaciers ("citizen science"). Particles < 1 μm were analysed for common polymers (polyethylene, polyethylene terephthalate, polypropylene, polyvinyl chloride, polystyrene and tire wear particles), revealing nanoplastic concentrations ranging 2-80 ng mL at five of 14 sites.

View Article and Find Full Text PDF

Citizen science has been increasingly utilized for monitoring resource conditions and visitor use in protected areas. However, the quality of data provided by citizen scientists remains a major concern that hinders wider applications in protected area management. We evaluated a prototype, citizen science-based trail assessment and monitoring program in Hong Kong using an integrated evaluative approach with a specific focus on the congruence of data collected by trained volunteers and managers.

View Article and Find Full Text PDF

Amid rapid urbanization, land use shifts in cities globally have profound effects on ecosystems and biodiversity. Birds, as a crucial component of urban biodiversity, are highly sensitive to environmental changes and often serve as indicator species for biodiversity. This study, using Shenzhen as a case study, integrates machine learning techniques with spatial statistical methods.

View Article and Find Full Text PDF

A diabetic heart is characterized by fibrosis, autophagy, oxidative stress, and altered mitochondrial functions. For this review, three databases (PubMed, EMBASE, and Web of Science) were searched for articles written in English from September 2023 to April 2024. Studies that used exercise training for at least 3 weeks and which reported positive, negative, or no effects were included.

View Article and Find Full Text PDF

Identification of Two Common Bottlenose Dolphin () Ecotypes in the Guadeloupe Archipelago, Eastern Caribbean.

Animals (Basel)

January 2025

Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, 75005 Paris, France.

The common bottlenose dolphin () exhibits significant intraspecific diversity globally, with distinct ecotypes identified in various regions. In the Guadeloupe archipelago, the citizen science NGO OMMAG has been monitoring these dolphins for over a decade, documenting two distinct morphotypes. This study investigates whether these morphotypes represent coastal and oceanic ecotypes, which have not been previously identified in the region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!