AI Article Synopsis

Article Abstract

Herein, four novel and bio-based hydrogel samples using sodium alginate (SA) and chitosan (CH) grafted with acrylamide (AAm) and glycidyl methacrylate (GMA) and their reinforced nanocomposites with graphene oxide (GO) were synthesized and coded as SA-g-(AAm-co-GMA), CH-g-(AAm-co-GMA), GO/SA-g-(AAm-co-GMA), and GO/CH-g-(AAm-co-GMA), respectively. The morphology, net charge, and water absorption capacity of samples were entirely changed by switching the biopolymer from SA to CH and adding a nano-filler. The proficiencies of hydrogels were compared in the immobilization of a model metagenomic-derived xylanase (PersiXyn9). The best performance was observed for GO/SA-g-poly(AAm-co-GMA) sample indicating better stabilizing electrostatic attractions between PersiXyn9 and reinforced SA-based hydrogel. Compared to the free enzyme, the immobilized PersiXyn9 on reinforced SA-based hydrogel showed a 110.1% increase in the released reducing sugar and almost double relative activity after 180 min storage. While immobilized enzyme on SA-based hydrogel displayed 58.7% activity after twelve reuse cycles, the enzyme on CH-based carrier just retained 8.5% activity after similar runs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827098PMC
http://dx.doi.org/10.1038/s41598-022-06013-0DOI Listing

Publication Analysis

Top Keywords

sa-based hydrogel
12
novel bio-based
8
sodium alginate
8
alginate chitosan
8
persixyn9 reinforced
8
reinforced sa-based
8
synthesis novel
4
bio-based hydrogels
4
hydrogels sodium
4
chitosan proficiency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!