A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multistage classification of oral histopathological images using improved residual network. | LitMetric

Oral cancer is a prevalent disease happening in the head and neck region. Due to the high occurrence rate and serious consequences of oral cancer, an accurate diagnosis of malignant oral tumors is a major priority. Thus, early diagnosis is very effective to give the patient a prompt response to treatment. The most efficient way for diagnosing oral cancer is from histopathological imaging, which provides a detailed view of inside cells. Accurate and automatic classification of oral histopathological images remains a difficult task due to the complex nature of cell images, staining methods, and imaging conditions. The use of deep learning in imaging techniques and computational diagnostics can assist doctors and physicians in automatically analysing Oral Squamous Cell Carcinoma biopsy images in a timely and efficient manner. Thus, it reduces the operational workload of the pathologist and enhance patient management. Training deeper neural networks takes considerable time and requires a lot of computing resources, due to the complexity of the network and the gradient diffusion problem. With this motivation and inspired by ResNet's significant successes to handle the gradient diffusion problem, in this study we suggest the novel improved ResNet-based model for the automated multistage classification of oral histopathology images. Three prospective candidate model blocks are presented, analyzed, and the best candidate model is chosen as the optimal one which can efficiently classify the oral lesions into well-differentiated, moderately-differentiated and poorly-differentiated in significantly reduced time, with 97.59% accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2022090DOI Listing

Publication Analysis

Top Keywords

classification oral
12
oral cancer
12
oral
9
multistage classification
8
oral histopathological
8
histopathological images
8
gradient diffusion
8
diffusion problem
8
candidate model
8
images
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!