Cells in the tumor microenvironment are well known for their role in cancer development and prognosis. The processes of genetic changes and possible remodeling in the tumor microenvironment of lung squamous cell carcinoma, on the other hand, are mainly unclear. In this investigation, 1164 immunological differentially expressed genes (DEGs) were shown to have predictive significance. A prognostic model with high prediction accuracy was constructed using these genes and survival data. There were 1020 upregulated genes and 144 downregulated genes found, with 57 genes found to be important in the development of LUSC. We used least absolute shrinkage and selection operator (LASSO) regression analysis to determine the risk profiles of 9 genes based on the expression values of 57 prognosis-related genes. The AUCs of the developed prognostic model for predicting patient survival at 1, 3, and 5 years were 0.66, 0.61, and 0.63, respectively, based on the training data. For immune-correlation analysis in this survival model, we chose IGLC7, which was seen to predict patient survival with high accuracy. The effects on immune cells and synergistic effects with other immunomodulators were then investigated. We discovered that IGLC7 is involved in immune response and inflammatory activity using gene ontology analysis and genomic sequence variance analysis (GSVA), with a potential effect, especially on B cells and T cells. In conclusion, IGLC7 expression levels are related to the malignancy of LUSC based on the constructed prognostic model and can thus be a therapeutic target for patients with LUSC. Furthermore, IGLC7 may work in concert with other immune checkpoint members to regulate the immune microenvironment of LUSC. These discoveries might lead to a fresh understanding of the complicated interactions between cancer cells and the tumor microenvironment, particularly the population of immune cells, and a novel approach to future immunotherapeutic treatments for patients with LUSC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2022086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!