Large-Area 2D Covalent Organic Framework Membranes with Tunable Single-Digit Nanopores for Predictable Mass Transport.

ACS Nano

Civil and Environmental Engineering Department, University of Houston, 4726 Calhoun Road, Houston, Texas 77204, United States.

Published: February 2022

The potential of covalent organic frameworks (COFs) for molecular separations remains unrealized because of challenges transforming nanoscale COF materials into large-area functional COF membranes. Herein, we report the synthesis of large-area (64 cm), ultrathin (24 nm), β-ketoenamine-linked 2D COFs using a facile interfacial polymerization technique. Angstrom-level control over single-digit nanopore size (1.4-2.0 nm) is achieved by direct integration of variable-length monomers. We apply these techniques to fabricate a series of large-area 2D COF membranes with variable thicknesses, pore sizes, and supporting materials. Tunable 2D COF properties enable control over COF membrane mass transport, resulting in high solvent fluxes and sharp molecular weight cutoffs. For organic solvent nanofiltration, the 2D COF membranes demonstrate an order-of-magnitude greater permeance than the state-of-the-art commercial polymeric membrane. We apply continuum models to quantify the dominance of pore passage resistance to mass transport over pore entrance resistance. A strong linear correlation between single-digit nanopore tortuosity and 2D COF thickness enables solvent fluxes to be predicted directly from solvent viscosity and COF membrane properties. Solvent-nanopore interactions characterized by the membrane critical interfacial tension also appear to influence mass transport. The pore flow transport model is validated by predicting the flux of a 52 nm thick COF membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c08804DOI Listing

Publication Analysis

Top Keywords

mass transport
16
cof membranes
12
cof membrane
12
cof
9
covalent organic
8
single-digit nanopore
8
solvent fluxes
8
transport pore
8
transport
5
membrane
5

Similar Publications

Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.

View Article and Find Full Text PDF

Groundwater-dependent ecosystems in areas with industrial land use are at risk of exposure to a PFAS chemicals. We investigated one such system with several known PFAS source areas, where high and low permeability sediments (glacial) coupled with groundwater-lake and groundwater/surface-water interactions created complex 'source to seep' dynamics. Using heat-tracing and chemical methods, numerous preferential groundwater discharge zones were identified and sampled across the upper Quashnet River stream-wetland system in Mashpee, MA, USA, downgradient of Joint Base Cape Cod (JBCC).

View Article and Find Full Text PDF

Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis.

View Article and Find Full Text PDF

Synthesis of P(AM/AA/SSS/DMAAC-16) and Studying Its Performance as a Fracturing Thickener in Oilfields.

Polymers (Basel)

January 2025

Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.

In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.

View Article and Find Full Text PDF

This article systematically investigated the improvement effect of polypropylene fiber (PPF) on the mechanical and freeze-thaw properties of alkali-activated fly ash slag concrete (AAFSC) with high fly ash content and cured at room temperature. Fly ash and slag were used as precursors, with fly ash accounting for 80% of the total mass. A mixed solution of sodium hydroxide and sodium silicate was used as alkali activator, and short-cut PPF was added to improve the performance of AAFSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!