Long-term exposure to benzene or its metabolite, hydroquinone (HQ), can causally contribute to acute myeloid leukemia. Long-noncoding RNAs are essential epigenetic regulators with critical roles in tumor initiation and malignant progression; however, the mechanism by which aberrantly expressed LINC00173 (long intergenic nonprotein coding RNA 173) regulates the pathogenesis of acute myeloid leukemia is not fully understood. Here, we found that the expression of LINC00173 decreased while the expression of DNA methyltransferase 1 (DNMT1) increased, and the methylation of LINC00173 promoter was negatively correlated with LINC00173 expression in GEPIA, CCLE databases, benzene-exposed workers, B-cell non-Hodgkin's lymphoma, K562, U937, or HQ-induced malignantly transformed TK6 (HQ-MT cells). Furthermore, in 5-aza-2'-deoxycytidine (DNA methyltransferase inhibitor) or trichostatin A (histone deacetylation inhibitor)-treated HQ-MT cells, the expression of LINC00173 was restored by reduced DNA promoter methylation levels. HQ-MT cells with DNMT1 knockout by CRISPR/Cas9 restored the expression of LINC00173 and inhibited the DNA methylation of its promoter as well as enrichment of DNMT1 to promoter. Overexpression of LINC00173 inhibited the expression of DNMT1, cell proliferation, tumor growth, enhanced chemosensitivity to cisplatin, and apoptosis in HQ-MT cells. LINC00173 interacts with DNMT1 to regulate the methylation of LINC00173 promoter. Overall, this study provides evidence that interaction between DNMT1 and LINC00173 regulates the expression of LINC00173 by regulating its promoter methylation level, thus regulating the function of HQ-MT cells in vitro and in vivo, providing a new therapeutic target for benzene-induced tumor.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfac004DOI Listing

Publication Analysis

Top Keywords

hq-mt cells
20
expression linc00173
16
linc00173
13
promoter methylation
12
linc00173 interacts
8
interacts dnmt1
8
dnmt1 regulate
8
expression
8
linc00173 expression
8
malignantly transformed
8

Similar Publications

Hydroquinone (HQ), one of the main active metabolites of benzene, can induce the abnormal expression of long non-coding RNA (lncRNA). Studies have shown that lncRNA plays an important role in the occurrence of hematologic tumors induced by benzene or HQ. However, the molecular mechanism remains to be elucidated.

View Article and Find Full Text PDF

Long-term exposure to benzene or its metabolite, hydroquinone (HQ), can causally contribute to acute myeloid leukemia. Long-noncoding RNAs are essential epigenetic regulators with critical roles in tumor initiation and malignant progression; however, the mechanism by which aberrantly expressed LINC00173 (long intergenic nonprotein coding RNA 173) regulates the pathogenesis of acute myeloid leukemia is not fully understood. Here, we found that the expression of LINC00173 decreased while the expression of DNA methyltransferase 1 (DNMT1) increased, and the methylation of LINC00173 promoter was negatively correlated with LINC00173 expression in GEPIA, CCLE databases, benzene-exposed workers, B-cell non-Hodgkin's lymphoma, K562, U937, or HQ-induced malignantly transformed TK6 (HQ-MT cells).

View Article and Find Full Text PDF

Up-regulation of DNMT3b contributes to HOTAIRM1 silencing via DNA hypermethylation in cells transformed by long-term exposure to hydroquinone and workers exposed to benzene.

Toxicol Lett

April 2020

Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China. Electronic address:

Benzene exposure is a risk factor of acute myeloid leukemia (AML), during such carcinogenesis long non-coding RNAs (lncRNAs) are important epigenetic regulators. HOTAIRM1 (HOXA transcript antisense RNA, myeloid-specific 1) plays an indispensable role in the development of AML. Hydroquinone (HQ) is one major metabolite of benzene and its ideal replacement in toxicology research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!